1. Information regarding the programme

1.1 Higher education	Babeş Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Master
1.6 Study programme /	Mathematics
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline MME3122 Representations of groups and algebras								
2.2 Course coordinator prof. dr. Andrei Marcus								
2.3 Seminar coordinator prof. dr. Andrei Marcus								
2.4. Year of	1	2.5	2	22.6. Type ofE2.7 Type ofOptional				
study		Semester		evaluation discipline				

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	1+1	
				seminar/laboratory		
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	14+14	
				seminar/laboratory		
Time allotment: he						
Learning using manual, course support, bibliography, course notes						
Additional documentation (in libraries, on electronic platforms, field documentation)						
Preparation for seminars/labs, homework, papers, portfolios and essays						
Tutorship						
Evaluations						
Other activities: project					7	
3.7 Total individual study hours88						

5.7 Total mulvidual study nouis	00
3.8 Total hours per semester	130
3.9 Number of ECTS credits	7

4. Prerequisites (if necessary)

4.1. curriculum	 deep knowledge of bachelor level algebra, especially of the following subjects: algebraic structures linear algebra
4.2. competencies	 ability to perform symbolic calculations ability to operate with abstract concepts ability to do logical deductions ability to solve mathematics problems bases on aquired notions

5. Conditions (if necessary)

5.1. for the course	blackboard, projector
5.2. for the seminar /lab	• blackboard
activities	

6. Specific competencies acquired

Professional competencies	 ability to perform symbolic calculations in various structures (groups, rings and fields, vector spaces, algebras, matrix algebras etc) ability to operate with abstract concepts ability to complex logical deductions ability to solve mathematics problems bases on aquired notions 	
Transversal competencies	 abstract reasoning applying mathematics in real life ability to solve problems 	

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• Advanced knowledge on group theory. Ability to solve more difficult problems
7.2 Specific objective of the discipline	 students will operate with fundamental concepts of group theory students will aquire knowlegde regarding the structure of groups from various important classes. students solve problems, theoretical and practical, using instruments of modern algebra, regarding matrix representations and characters.

8. Content

8.1 Course	Teaching methods	Remarks
Week 1. Algebras, subalgebras, homomorphisms,	Explanation, dialogue,	
ideals, factor algebras.	examples, proofs	
Week 2. Examples. Group algebra. Path algebra of a	Explanation, dialogue,	
quiver.	examples, proofs	
Week 3. Representations and modules. Simple	Explanation, dialogue,	
modules (irreducible representations) and	examples, proofs	
indecomposable modules.		
Week 4. Tensor products. Enveloping algebra of a Lie	Explanation, dialogue,	
algebra.	examples, proofs	
Week 5. Hopf algebras.	Explanation, dialogue,	
	examples, proofs	
Week 6. Semisimple algebras and modules.	Explanation, dialogue,	
	examples, proofs	
Week 7. The Jordan-Holder and Krull-Schmidt	Explanation, dialogue,	
Theorems.	examples, proofs	
Week 8. Representations of finite groups. Characters.	Explanation, dialogue,	
	examples, proofs	
Week 9. Orthogonality of characters.	Explanation, dialogue,	
	examples, proofs	

Week 10. Character table of a finite group.	Explanation, dialogue,
	examples, proofs
Week 11. Products of characters.	Explanation, dialogue,
	examples, proofs
Week 12. Induced characters. Frobenius reciprocity.	Explanation, dialogue,
	examples, proofs
Week 13. Burnside's Theorem.	Explanation, dialogue,
	examples, proofs
Week 14. Representations of the symmetric group.	Explanation, dialogue,
	examples, proofs

Bibliography

[1] J.L. Alperin and R.B. Bell. *Groups and representatons*. Springer-Verlag. 1995.

[2] P. Etingof et al. Introduction to representation theory. American Mathematical Society 2011.

8.2 Seminar / laboratory	Teaching methods	Remarks
Week 1 Algebras subalgebras homomorphisms	dialogue examples proofs	
ideals, factor algebras.		
Week 2. Examples. Group algebra. Path algebra of a	dialogue, examples, proofs	
quiver.		
Week 3. Representations and modules. Simple	dialogue, examples, proofs	
modules (irreducible representations) and		
indecomposable modules.		
Week 4. Tensor products. Enveloping algebra of a Lie	dialogue, examples, proofs	
algebra.		
Week 5. Hopf algebras.	dialogue, examples, proofs	
Week 6. Semisimple algebras and modules.	dialogue, examples, proofs	
Week 7. The Jordan-Holder and Krull-Schmidt	dialogue, examples, proofs	
Theorems.		
Week 8. Representations of finite groups. Characters.	dialogue, examples, proofs	
Week 9. Orthogonality of characters.	dialogue, examples, proofs	
Week 10. Character table of a finite group.	dialogue, examples, proofs	
Week 11. Products of characters.	dialogue, examples, proofs	
Week 12. Induced characters. Frobenius reciprocity.	dialogue, examples, proofs	
Week 13. Burnside's Theorem.	dialogue, examples, proofs	
Week 14. Representations of the symmetric group.	dialogue, examples, proofs	
Bibliography		

3. B.E. Sagan. The symmetric group. Springer-Verlag. 2001.

4. I.Assem. Algebres et modules. Univ. Ottawa. 1997.

5. T.Y. Lam. A first course in noncommutative rings. 2nd ed. Springer Verlag 2001.

6. M. Auslander, I. Reiten, S.O. Smalø. *Representation Theory of Artin Algebras*, Cambridge Univ. Press, 1995.

7. D.J. Benson, Representations and Cohomology, vol. I, II. Cambridge Univ. Press, 1998.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- Such a course exists in the curricula of all major universities in Romania and abroad;
- Groups are fundamental mathematical structures and have multiple applications in geometry, number theory, cryptography, chemistry and physics, as they measure symmetry.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the		
			grade (%)		
10.4 Course	- know the basic principles	- written exam	75%		
	of the field;				
	- apply the new concepts				
10.5 Seminar/lab activities	- problem solving	- homeworks	25%		
10.6 Minimum performance standards					
to aquire 5 points to pass the exam					

Date

Signature of course coordinator

17.04.2019

Prof.dr. Andrei Mărcuș

Prof.dr. Andrei Mărcuș

Signature of seminar coordinator

Date of approval

.....

Signature of the head of department

Prof. dr. Octavian Agratini