SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Master
1.6 Study programme /	Mathematics
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline MME3103 Group Theory and applications							
2.2 Course coordinator prof. dr. Andrei Marcus							
2.3 Seminar coordinator				prof. dr. Andrei Marcus			
2.4. Year of	1 2.5 1 2.6. Type of E 2.7 Type of Compulsory						
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1+1
				seminar/laboratory	
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	14+14
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					24
Additional documentation (in libraries, on electronic platforms, field documentation)					24
Preparation for seminars/labs, homework, papers, portfolios and essays					28
Tutorship					7
Evaluations					5
Other activities: project					7
0.5.5.11.11.11.1.1		0.0			

3.7 Total individual study hours	88
3.8 Total hours per semester	130
3.9 Number of ECTS credits	7

4. Prerequisites (if necessary)

4.1. curriculum	 deep knowledge of bachelor level algebra, especially of the following subjects: algebraic structures linear algebra
4.2. competencies	 ability to perform symbolic calculations ability to operate with abstract concepts ability to do logical deductions ability to solve mathematics problems bases on aquired notions

5. Conditions (if necessary)

5.1. for the course	blackboard, projector
5.2. for the seminar /lab	 blackboard
activities	

6. Specific competencies acquired

- 0	Specifi	te competencies acquired	
Lowe the fact of the	competencies	 ability to perform symbolic calculations in various structures (groups, matrix algebras etc) ability to operate with abstract concepts ability to complex logical deductions ability to solve mathematics problems bases on aquired notions 	
Transmon	competencies	 abstract reasoning applying mathematics in real life ability to solve problems 	

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	Advanced knowledge on group theory. Ability to solve more difficult problems
7.2 Specific objective of the discipline	 students will operate with fundamental concepts of group theory students will aquire knowlegde regarding the structure of groups from various important classes. students solve problems, theoretical and practical, using instruments of modern algebra, regarding symmetry groups.

8. Content

8.1 Course	Teaching methods	Remarks
1. Revision: groups, subgroups, homomorphisms,	Explanation, dialogue,	
cosets, Lagrange' theorem.	examples, proofs	
2. Normal subgroup, factor group, isomorphism	Explanation, dialogue,	
theorems.	examples, proofs	
3. The symmetric group.	Explanation, dialogue,	
	examples, proofs	
4. Group actions on sets.	Explanation, dialogue,	
	examples, proofs	
5. p-groups and Sylow theorems.	Explanation, dialogue,	
	examples, proofs	
6. Commutators, derived sequence, ascending and	Explanation, dialogue,	
descending central sequences.	examples, proofs	
7. Solvable group	Explanation, dialogue,	
	examples, proofs	
8. Nilpotent groups	Explanation, dialogue,	
	examples, proofs	
9. Direct and semidirect products. Finitely	Explanation, dialogue,	
generated abelian groups. Dihedral groups.	examples, proofs	

10. Group extensions. The Schur-Zassenhaus	Explanation, dialogue,
theorem.	examples, proofs
11. Classification of groups of given order.	Explanation, dialogue,
	examples, proofs
12. Symmetry groups.	Explanation, dialogue,
	examples, proofs
13. The general linear group.	Explanation, dialogue,
	examples, proofs
14. Free groups and presentations.	Explanation, dialogue,
	examples, proofs

Bibliography

- [1] M.A. Armstrong. Groups and symmetry. Springer-Verlag 1988.
- [2] J.J. Rotman. An introduction to the theory of groups. Springer-Verlag. 1995.

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Revision: groups, subgroups, homomorphisms,	dialogue, examples, proofs	
cosets, Lagrange' theorem.		
2. Normal subgroup, factor group, isomorphism	dialogue, examples, proofs	
theorems.		
3. The symmetric group.	dialogue, examples, proofs	
4. Group actions on sets.	dialogue, examples, proofs	
5. p-groups and Sylow theorems.	dialogue, examples, proofs	
6. Commutators, derived sequence, ascending and	dialogue, examples, proofs	
descending central sequences.		
7. Solvable group	dialogue, examples, proofs	
8. Nilpotent groups	dialogue, examples, proofs	
9. Direct and semidirect products. Finitely	dialogue, examples, proofs	
generated abelian groups. Dihedral groups.		
10. Group extensions. The Schur-Zassenhaus	dialogue, examples, proofs	
theorem.		
11. Classification of groups of given order.	dialogue, examples, proofs	
12. Symmetry groups.	dialogue, examples, proofs	
13. The general linear group.	dialogue, examples, proofs	
14. Free groups and presentations.	dialogue, examples, proofs	

Bibliography

- 3. J.L. Alperin and R.B. Bell. *Groups and representations*. Springer-Verlag. 1995.
- 4. D.J.S. Robinson. An introduction to the theory of groups. 2nd Ed. Springer-Verlag. 1996.
- 5. B.E. Sagan. *The symmetric group*. Springer-Verlag. 2001.
- 6. John B. Fraleigh. A First course in abstract algebra. 6th edition, Addison Wesley.
- 7. Michael Artin. Algebra. Prentice Hall 1991.
- 8. D.S. Dummit and R.M. Foote. Abstract Algebra. 2nd edition. John Wiley & Sons, 1999.
- 9. J.A. Gallian. Contemporary Abstract Algebra. 7th Edition.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- Such a course exists in the curricula of all major universities in Romania and abroad;
- Groups are fundamental mathematical structures and have multiple applications in geometry, number theory, cryptography, chemistry and physics, as they measure symmetry.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)			
10.4 Course	know the basic principles of the field;apply the new concepts	- written exam	75%			
10.5 Seminar/lab activities	- problem solving	- homeworks	25%			
10.6 Minimum performance standards						
> to aquire 5 points to pass the exam						

Date	Signature of course coordinator	Signature of seminar coordinator
17.04.2019	Prof.dr. Andrei Mărcuș	Prof.dr. Andrei Mărcuș
Date of approval	S	Signature of the head of department
	I	Prof. dr. Octavian Agratini