SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babes-Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme /	Computer Science (in Romanian)
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline Robo				otic Process Automation (Automatizarea proceselor de business)			
2.2 Course coordinator				Lecturer PhD Camelia Chisăliță-Crețu			
2.3 Seminar coordinator				Lecturer PhD Camelia Chisăliță-Crețu			
2.4. Year of	3	2.5	5	2.6. Type of	C	2.7 Type of	Optional
study		Semester		evaluation		discipline	
2.8 Discipline							
Code		MLE5147					

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	5	Of which: 3.2 course	2	3.3	1 lab +
				seminar/laboratory	2 project
3.4 Total hours in the curriculum	70	Of which: 3.5 course	28	3.6	42
				seminar/laboratory	
Time allotment:					Hours
Learning using manual, course support, bibliography, course notes					5
Additional documentation (in libraries, on electronic platforms, field documentation)					5
Preparation for seminars/labs, homework, papers, portfolios and essays					5
Tutorship					5
Evaluations					10
Other activities:				-	
		20			1

3.7 Total individual study hours	30
3.8 Total hours per semester	100
3.9 Number of ECTS credits	4

4. Prerequisites (if necessary)

ramming skills in at least one of the programming Tava, C#

5. Conditions (if necessary)

5.1. for the course	Course hall with projector
5.2. for the seminar /lab	Laboratory: computers and use of a programming language
activities	environment

6. Specific competencies acquired

Professional competencies	•	C2.1 Identify adequate software systems development methodologies C4.3 Identify models and methods adequate to real life problem solving.
Transversal competencies	•	CT1 Apply rules to organized and efficient work, responsibilities of didactical and scientific activities and creative capitalization of own potential, while respecting principles and rules for professional ethics. CT3 Use efficient methods and techniques for learning, knowledge gaining, and research and develop capabilities for capitalization of knowledge, accommodation to society requirements and communication in English.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• Enhance the students understanding on business process identification and i automation.			
	• Provide the students with an environment in which they can explore the usage and usefulness of software development to increase efficiency in business			
	processes.			
	• Induce a realistic and industry driven view of software development for			
	business process automation related concepts and their inherent benefits.			
7.2 Specific objective	• Give students the ability to explore various ways to automate business			
of the discipline	processes.			
	• Improve the students' abilities to tackle on goal driven process automation.			
	• Enhance the students understanding of process automation value in business.			
	• Students will be able to use various tools, e.g., UiPath Studio, in order to provide a process automation solution.			
	• Students will be able to design and develop a business process automation			
	solution following specific requirements and real world case studies available			
	on RPA learning platforms.			

8. Content

8.1 Course	Teaching methods	Remarks
1. Robotic Process Automation (RPA	• Interactive exposure	
1.1. Basics concepts	Explanation. Conversation	
1.2. UiPath Platform Architecture	Didactical demonstration	
2. Business Process	Interactive exposure	
2.1. Business Process Identification	• Explanation. Conversation	
2.2. Introduction to UiPath Studio	Didactical demonstration	
2.2.1. Variables. Data types		
2.2.2. Control flow structures		
3. Data processing	Interactive exposure	
3.1. Operations on Data	Explanation. Conversation	
3.1.1. Entry. Update. Validation	Didactical demonstration	
3.1.2. Migration		
3.2. Data manipulation		
3.2.1. Scalar variables. Collection	ons. Tables	
3.2.2. Text manipulation		
3.2.3. Gathering and assembling	g data	

4. User Events. Recorder 4.1. User Events 4.2. Recorder 4.2.1. Desktop recording	 Interactive exposure Explanation. Conversation Didactical demonstration
4.2.2. Web recording 5. Advanced UI Interaction 5.1. Input/output methods 5.2. Screen scraping 5.3. Data scraping	 Interactive exposure Explanation. Conversation Didactical demonstration
6. Selectors6.1. Definition and access6.2. Customization and debugging6.3. Dynamic selectors	 Interactive exposure Explanation Conversation Didactical demonstration
7.1. Basic Citrix Automation 7.1.1. Keyboard Automation 7.1.2. Information Retrieval 7.2. Advanced Citrix Automation 7.2.1. Best Practice Rules 7.2.2. Starting Applications	 Interactive exposure Explanation. Conversation Didactical demonstration
8. Excel. Data Tables8.1. Basic Interactions8.2. Data Process	Interactive exposureExplanation. ConversationDidactical demonstration
9. PDF and E-mail 9.1. PDF 9.1.1. Data Extraction 9.1.2. Anchor base Activity 9.2. E-mail Automation 9.2.1. E-mail interaction 9.2.2. E-mail sending	 Interactive exposure Explanation. Conversation Didactical demonstration
10. Debugging and Exception Handling 10.1.UiPath debugging tools 10.2.Input issues 10.3.Error catching	 Interactive exposure Explanation. Conversation Didactical demonstration
11. Orchestrator 11.1.Basics. Features 11.2.Jobs scheduler 11.3.Queues	 Interactive exposure Explanation. Conversation Didactical demonstration
12. Project Organization 12.1.Best practices 12.2.Invoke Command 12.3.Examples	 Interactive exposure Explanation. Conversation Didactical demonstration
13. Testing. Deployment 13.1.Testing the RPA Solution 13.2.Deploying an RPA Solution	 Interactive exposure Explanation. Conversation Didactical demonstration
14. Final considerations 14.1.ROI with RPA 14.2.Emerging and Future Trends in RPA Bibliography	 Interactive exposure Explanation. Conversation Didactical demonstration

Bibliography

Institute for RPA, An Introduction to RPA. A primer, http://irpaai.com/wp-content/uploads/2015/05/Robotic-Process-Automation-June2015.pdf

Steve Kaelble, RPA, https://www.nice.com/websites/rpa/assets/robotic process automation for dummies.pdf KPMG, RPA, https://home.kpmg/content/dam/kpmg/jp/pdf/jp-en-rpa-business-improvement.pdf
Assurity, Introduction to RPA, https://assurity.nz/assets/290a244552/An-Introduction-to-RPA.pdf

UiPath, https://www.uipath.com/developers/vide	UiPath, https://www.uipath.com/developers/video-tutorials					
8.2 Seminar / laboratory	Teaching methods	Remarks				
1. Laboratory 1	Presentation, Conversation, Dialogue,					
UiPath Studio installation	Case studies					
RPA project setup						
2. Laboratory 2	Presentation, Conversation, Dialogue,					
Repetitive business process identification	Case studies					
Automation plan						
3. Laboratory 3	Presentation, Conversation, Dialogue,					
Project input	Case studies					
Data processing						
4. Laboratory 4	Presentation, Conversation, Dialogue,					
UI interaction	Case studies					
5. Laboratory 5	Presentation, Conversation, Dialogue,					
Image and Text Automation	Case studies					
6. Laboratory 6	Presentation, Conversation, Dialogue,					
PDFs and E-mail Automation	Case studies					
Project output. Project outcome						
7. Laboratory 7	Evaluation					
Project turn-in/Demo						
References:						
See references from Lectures.						

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- Students will know how to design and develop an automation solution for a repetitive business process, considering an identified flow.
- Students will know the components of the UiPath platform and to use them properly.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation	10.3 Share in
		methods	the grade (%)
10.4 Seminar/laboratory	Three out of six lab activities will be	Laboratory Activity	30%
activities	graded. The arithmetic average of the		
	grades is denoted by L .		
10.5 Project	Design and develop a solution for	Project grading	70%
	business process automation in UiPath		
	Studio. The grade is denoted by P .		
Domonila			

Remark:

• The automation process project will pe achieved in groups of 2-3 students.

10.6 Minimum performance standards

- The final grade (M) is computed as follows: M = 30%L + 70%P.
- At least $M \ge 5.00$ is favourable to pass this course exam.

Date Signature of course coordinator

Signature of seminar coordinator

30.04.2019 Lect. PhD. Camelia Chisăliță-Crețu,

Lect. PhD. Camelia Chisăliță-Crețu,

Date of approval

Signature of the head of department

Prof. PhD. Anca Andreica