LEHRVERANSTALTUNGSBESCHREIBUNG

1. Angaben zum Programm

1.1 Hochschuleinrichtung	Babes-Bolyai Universität, Cluj-Napoca
1.2 Fakultät	Mathematik und Informatik
1.3 Department	Informatik
1.4 Fachgebiet	Informatik
1.5 Studienform	Bachelor
1.6 Studiengang /	Informatik
Qualifikation	

2. Angaben zum Studienfach

2.1 LV-Bezeichnun	g (de)	Formale S	Formale Sprachen und Compiler				
(en)		Formal lar	Formal languages and compilers				
(ro)		Limbaje fo	Limbaje formale și tehnici de compilare				
2.2 Lehrverantwortlicher – Vorlesung			Lect. Dr. Iulian Simion				
2.3 Lehrverantwortlicher – Seminar			Lect. Dr. Iulian Simion				
2.4 Studienjahr	3	2.5 Semester	5	2.6. Prüfungsform	P	2.7 Art der LV	Pflichtfach

3. Geschätzter Workload in Stunden

3.1 SWS		6	von denen	: 3.2	2	3.3 Labor	2+2
			Vorlesung				
3.4 Gesamte Stunde	nanzahl im	84	von denen	: 3.5	28	3.6 Seminar/Übung	56
Lehrplan			Vorlesung				
Verteilung der Studi	enzeit:						Std.
Studium nach Handl	bücher, Kursbuch, I	Biblio	graphie und	Mitschrifte	n		30
Zusätzliche Vorbere	itung in der Bibliotl	nek, a	uf elektronis	chen Fachp	olattfo	rmen und durch	30
Feldforschung							
Vorbereitung von Seminaren/Übungen, Präsentationen, Referate, Portfolios und Essays							30
Tutorien							6
Prüfungen						20	
Andere Tätigkeiten:							-
3.7 Gesamtstundena	nzahl Selbststudiun	n	116				
3.8 200							
Gesamtstundenanz							
ahl / Semester							
3.9							
Leistungspunkte							

4. Voraussetzungen (falls zutreffend)

4.1 curricular	Datenstrukturen und Algorithmen
4.2 kompetenzbezogen	¬¬¬ Programmingskills

5. Bedingungen (falls zutreffend)

5.1 zur Durchführung der	¬从 Vorlesungsraum, Beamer, Laptop
Vorlesung	
5.2 zur Durchführung des	- Computerraum
Seminars / der Übung	

6. Spezifische erworbene Kompetenzen

	K 4.1 Definieren der Grundkonzepte und Prinzipien der Informatik, sowie der mathematischen
<u> </u>	Theorien und Modelle
Berufliche Kompetenzen	K 4.2 Interpretation der formalen Modelle der Mathematik und Informatik K 4.3 Identifizierung der geeigneten Modelle und Methoden für die Lösung realer Probleme K 4.4 Anwendung der Simulierungen für die Untersuchung der Verhaltensweise der angewandten Modelle und Bewertung der Ergebnisse K4.5 Einbauen der formalen Modelle in geeignete Anwendungen der spezifischen Gebiete
Transversale Kompetenzen	TK1 Anwendung der Regeln für gut organisierte und effiziente Arbeit, für verantwortungsvolle Einstellungen gegenüber der Didaktik und der Wissenschaft, für kreative Förderung des eigenen Potentials, mit Rücksicht auf die Prinzipien und Normen der professionellen Ethik TK3 Anwendung von effizienten Methoden und Techniken für Lernen, Informieren und Recherchieren, für das Entwicklen der Kapazitäten der praktischen Umsetzung der Kenntnisse, der Anpassung an die Bedürfnisse einer dynamischen Gesellschaft, der Kommunikation in rumänischer Sprache und in einer internationalen Verkehrssprache

7. Ziele (entsprechend der erworbenen Kompetenzen)

7.1 Allgemeine Ziele der	Das Erlernen und Verstehen wie man Compiler aufbaut.			
Lehrveranstaltung	Verbesserung der Programmierfähigkeiten.			
7.2 Spezifische Ziele der	Kenntnisse über den Aufbau eines Compiler.			
Lehrveranstaltung	Aneignen der grundlegenden Begriffe der formalen Sprachen.			
	Aneignen der grundlegenden Begriffe über Compiler.			

8. Inhalt

8.1 Vorlesung	Lehr- und Lernmethode	Anmerkungen
1. Überblick:	Vortrag, Erklärung, Debatte,	
Aufbau eines Compiler	praktische Beispiele	
 Frontend, Optimizer, Backend 		
 Reguläre Ausdrücke in der Praxis 		
2. Scanner:	Vortrag, Erklärung, Debatte,	
Endliche Automaten	praktische Beispiele	
reguläre Ausdrücke und reguläre		

Sprachen		
3. Scanner:Thompson-KonstruktionTeilmengenkonstruktion	Vortrag, Erklärung, Debatte, praktische Beispiele	
4. Scanner:	Vortrag, Erklärung, Debatte, praktische Beispiele	
5. Scanner:ScannerumsezungenKleene-Konstruktion	Vortrag, Erklärung, Debatte, praktische Beispiele	
6. Parser:kontextfreie GrammatikenParse-Bäume	Vortrag, Erklärung, Debatte, praktische Beispiele	
7. Top-Down-Parser:generischer Algorithmusbacktrackingfreie Grammatiken	Vortrag, Erklärung, Debatte, praktische Beispiele	
Top-Down-Parser: Beseitigung von Linksrekursion backtrackingfreie Grammatiken	Vortrag, Erklärung, Debatte, praktische Beispiele	
9. Top-Down-Parser:Rekursiver AbstiegLL(1)-Parser	Vortrag, Erklärung, Debatte, praktische Beispiele	
10. Bottom-Up-Parser:LR(1)-ParserAufbau der LR(1)-Tabellen	Vortrag, Erklärung, Debatte, praktische Beispiele	
11. Bottom-Up-Parser:Aufbau der LR(1)-TabellenWiederanlauf im Fehlerfall	Vortrag, Erklärung, Debatte, praktische Beispiele	
12. Attributgrammatiken 13. Backend:	Vortrag, Erklärung, Debatte, praktische Beispiele Vortrag, Erklärung, Debatte, praktische Beispiele	Je nach Bedarf, werden die Themen in den letzten

Instruction Scheduling		zwei Vorlesungen
(Befehlseinplanung)		erweitert oder ausgelassen
14. Chomsky-Hierarchie	Vortrag, Erklärung, Debatte,	Je nach Bedarf, werden
	praktische Beispiele	die Themen in den letzten
		zwei Vorlesungen
		erweitert oder ausgelassen

Literatur

- [1] K.D. COOPER, L. TORCZON Engineering a Compiler, Elsevier Science & Technology, 2011.
- [2] A.V. AHO, D.J. ULLMAN Principles of compiler design, Addison-Wesley, 1978.
- [3] C. WAGENKNECHT, HIELSCHER M., Formale Sprachen, abstrakte Automaten und Compiler, Vieweg Teubner, 2009.
- [4] ASTEROTH, A., BAIER, C., Theoretische Informatik, eine Einführung in Berechnbarkeit, Komplexität und formale Sprachen, Pearson Studium, 2002.
- [5] HROMKOVIC, J., Theoretische Informatik, Formale Sprachen, Berechenbarkeit, Komplexitätstheorie, Algorithmik, Kommunikation und Kryptographie, Vieweg Teubner, 2011.

8.2 Übung	Lehr- und Lernmethode	Anmerkungen
1. RA in der Praxis	Beispiele, Diskussionen,	
	Teamarbeit	
2-5. Übungen zu:	Beispiele, Diskussionen	
NEA und DEA		
reguläre Ausdrücke		
reguläre Sprachen		
entsprechende Algorithmen		
6-12. Übungen zu:	Beispiele, Diskussionen	
kontextfreie Grammatiken		
reguläre Grammatiken		
• LL(k)-Grammatiken		
• LR(k)-Grammatiken		
13-14. Instruction Scheduling und/oder	Beispiele, Diskussionen	Je nach Bedarf, werden
Chomsky-Hierarchie		diese Themen erweitert
		oder ausgelassen

Literatur

- [1] K.D. COOPER, L. TORCZON Engineering a Compiler, Elsevier Science & Technology, 2011.
- [2] A.V. AHO, D.J. ULLMAN Principles of compiler design, Addison-Wesley, 1978.
- [3] C. WAGENKNECHT, HIELSCHER M., Formale Sprachen, abstrakte Automaten und Compiler, Vieweg Teubner, 2009.
- [4] ASTEROTH, A., BAIER, C., Theoretische Informatik, eine Einführung in Berechnbarkeit, Komplexität und formale Sprachen, Pearson Studium, 2002.
- [5] HROMKOVIC, J., Theoretische Informatik, Formale Sprachen, Berechenbarkeit, Komplexitätstheorie, Algorithmik, Kommunikation und Kryptographie, Vieweg Teubner, 2011.

Labor	

1. RA in der Praxis	Beispiele, Diskussionen,
	Teamarbeit
2. EA als Datenstruktur	Beispiele, Diskussionen,
	Teamarbeit
3. DEA aus einem NEA	Beispiele, Diskussionen,
	Teamarbeit
4. Hopcroft-Algorithmus	Beispiele, Diskussionen,
	Teamarbeit
5. Tabellengesteuerter Scanner	Beispiele, Diskussionen,
	Teamarbeit
6. Flex Scanner	Beispiele, Diskussionen,
	Teamarbeit
7. KFG als Datenstrukturen	Beispiele, Diskussionen,
	Teamarbeit
8. TD-Parsing mit Backtracking	Beispiele, Diskussionen,
	Teamarbeit
9. Beseitigung von Linksrekursion	Beispiele, Diskussionen,
	Teamarbeit
10. Tabellengesteuerter LL(1)-Parser	Beispiele, Diskussionen,
	Teamarbeit
11. LR(1)-Parser Umsetzung	Beispiele, Diskussionen,
	Teamarbeit
12. Erzeugen von LR(1)-Tabllen	Beispiele, Diskussionen,
	Teamarbeit
13. Anwendung von lex/flex + yac/bison:	Beispiele, Diskussionen,
Implementierung.	Teamarbeit
14. Anwendung von lex/flex + yac/bison:	Beispiele, Diskussionen,
Testen und Abgabe.	Teamarbeit

Literatur:

- [1] K.D. COOPER, L. TORCZON Engineering a Compiler, Elsevier Science & Technology, 2011.
- [2] C. WAGENKNECHT, HIELSCHER M., Formale Sprachen, abstrakte Automaten und Compiler, Vieweg Teubner, 2009.

9. Verbindung der Inhalte mit den Erwartungen der Wissensgemeinschaft, der Berufsverbände und der für den Fachbereich repräsentativen Arbeitgeber

Die besprochene Theorie wird aus der Perspektive des Aufbau eines Compilers besprochen. Der Inhalt dient also als theoretische Grundlage für die Kentnisse der Informatiker in Software-Unternehmen.

Formale Sprachen und Automaten dienen als Basis für Berechenbarkeitstheorie und Komplexitätstheorie.

10. Prüfungsform

Veranstaltungsart	10.1 Evaluationskriterien	10.2 Evaluationsmethoden	10.3 Anteil an der
			Gesamtnote
10.4 Vorlesung	Grundkenntnisse.	Schriftliche Prüfung	60%
10.5 Seminar / Übung	Algorithmenanwendung	Labor Arbeiten	40%

10.6 Minimale Leistungsstandards

- Fähigkeit aus regulären Ausdrücken einen minimalen deterministischen Automaten zu erhalten.
- Fähigkeit eine LL(1)-Grammatik zu erkennen und backtrackingfreies Parsen durchzuführen.
- Fähigkeit eine LR(1)-Tabellen zu erzeugen und backtrackingfreies Parsen durchzuführen.
- Fähigkeit Grammatiken und Automaten anhand der Chomsky-Hierarchie zu erklären.
- Für die Laboraufgaben wird man mindestens 5 erhalten müssen.
- Für die schriftliche Prüfung wird man mindestens 5 erhalten müssen.

Ausgefüllt am:	Vorlesungsverantwortlicher	Seminarverantwortlicher
1. Februar 2020	Lect. Dr. Iulian Simion	Lect. Dr. Iulian Simion
Genehmigt im Department am:	Departmentdirektor	