SYLLABUS ## 1. Information regarding the programme | 1.1 Higher education | Babes-Bolyai University | |-----------------------|---| | institution | | | 1.2 Faculty | Faculty of Mathematics and Computer Science | | 1.3 Department | Department of Computer Science | | 1.4 Field of study | Computer Science | | 1.5 Study cycle | Bachelor | | 1.6 Study programme / | Computer Science | | Qualification | | # 2. Information regarding the discipline | 2.1 Name of the discipline (en) | | | Software Systems Verification and Validation | | | | | |---------------------------------|---|--------------|--|--|--|------------|------------| | (ro) | | | | | | | | | 2.2 Course coordinator | | | | PhD Associate Professor Vescan Andreea | | | | | 2.3 Seminar coordinator | | | PhD Associate Professor Vescan Andreea | | | | | | 2.4. Year of study | 3 | 2.5 Semester | E 6 2.6. Type of E 2.7 Type of compul | | | | compulsory | | | | | | evaluation | | discipline | | | 2.8 Code of the | | MLE5014 | | | | | | | discipline | | | | | | | | ## **3. Total estimated time** (hours/semester of didactic activities) | 3.1 Hours per week | 4 | Of which: 3.2 course | 2 | 3.3 | 2 | |---|----|----------------------|----|--------------------|-------| | | | | | seminar/laboratory | | | 3.4 Total hours in the curriculum | 48 | Of which: 3.5 course | 24 | 3.6 | 24 | | | | | | seminar/laboratory | | | Time allotment: | | | | | hours | | Learning using manual, course support, bibliography, course notes | | | | | 22 | | Additional documentation (in libraries, on electronic platforms, field documentation) | | | | | 22 | | Preparation for seminars/labs, homework, papers, portfolios and essays | | | | | 22 | | Tutorship | | | | 3 | | | Evaluations | | | | 8 | | | Other activities: | | | | 0 | | | 27 T + 1 1 1 1 1 1 1 | | 77 | | | 1 | | 3.7 Total individual study hours | 77 | |----------------------------------|-----| | 3.8 Total hours per semester | 125 | | 3.9 Number of ECTS credits | 5 | ## **4. Prerequisites** (if necessary) | 4.1. curriculum | Object oriented programming, Advanced programming | |-----------------|---| | | methods, Systems for design and implementation, Web | | | Programming | |-------------------|--| | 4.2. competencies | Skills in highlevel object oriented programming environments | # **5. Conditions** (if necessary) | 5.1. for the course | Video projector, Internet access | |---------------------------|--| | 5.2. for the seminar /lab | Laboratory with computers; various tools for verification activities | | activities | | 6. Specific competencies acquired | o. Speem | te competences acquired | |----------------------------------|--| | Professional competencies | Identification of proper methodologies for software systems development; Identification and explication of proper software systems specification methods; Using methodologies and tools for development of informatics applications; Using proper criteria and methods for evaluation of software applications; Realization of dedicated information projects. | | Transversal competencies | Application of efficient and rigorous working rules, manifest responsible attitudes toward the scientific and didactic fields, respecting the professional and ethical principles. Use of efficient methods and techniques for learning, information, research and development of abilities for knowledge exploitation, for adapting to the needs of a dynamic society and for communication in Romanian as well as in a widely used foreign language | # **7. Objectives of the discipline** (outcome of the acquired competencies) | 7.1 General objective of the discipline | To gain knowledge of partial correct and total correct algorithms To gain knowledge of designing correct algorithms and proving the correctness hand-in-hand; To learn the methods of program verification and validation; To become used with building correct programs from specification; To develop a modern programming style. | |--|---| | 7.2 Specific objective of the discipline | Students will know how and which are the steps of an inspection, either of the source code or specification of each stage of the development of the software system. Students will know to create test cases from the specification and from source code, that will help them develop a better and robust software system. Students will know how to use tools for the management of testing process. Students will know how to design test cases using various criteria (black-box, white-box). | ## 8. Content | 8.1 Course | Teaching methods | Remarks | |---------------------------------|----------------------|---------| | 1. Verification and validation. | Interactive exposure | | | Program inspection | Explanation | | | | Conversation | |---|--| | | Conversation Did extinct demonstration | | 2. Program (a) (1) | Didactical demonstration | | 2. Program testing (1): script testing versus | Interactive exposure | | exploratory testing | Explanation | | | Conversation | | | Didactical demonstration | | 3. Program testing (2): the concept of program | Interactive exposure | | testing; unit testing: testing criteria – black box | Explanation | | testing, testing criteria – white box testing | Conversation | | (cont.) | Didactical demonstration | | 4. Program testing (3): Levels of testing (unit, | Interactive exposure | | integration, system, regression, acceptance) | Explanation | | | Conversation | | | Didactical demonstration | | 5. Testing Web applications | Interactive exposure | | | Explanation | | | Conversation | | | Didactical demonstration | | 6. Symbolic execution | Interactive exposure | | | Explanation | | | Conversation | | | Didactical demonstration | | 7. The theory of program correctness. | Interactive exposure | | The evolution of the concept of program | Explanation | | correctness. | Conversation | | Floyd's method for prooving correctness. | Didactical demonstration | | Hoare's axiomatisation method | Didactical demonstration | | Dijkstra: the weakest precondition.Stepwise | | | refinement from specifications | | | remement from specifications | | | 8. Agile testing | Interactive exposure | | 6. Agne testing | Explanation | | | Conversation | | | | | 0 Model abooking | Didactical demonstration | | 9. Model checking | Interactive exposure | | | Explanation | | | Conversation | | 10 D 0 12 001 010 001 | Didactical demonstration | | 10. Program Quality, SQA,CMM SPI, | Interactive exposure | | Cleanroom | Explanation | | | Conversation | | | Didactical demonstration | | 11. Security testing | Interactive exposure | | | Explanation | | | Conversation | | | Didactical demonstration | | 12. Verification/testing related activities: | Interactive exposure | | Technical testing skills, Soft testing skills, | Explanation | | Giving, feedback. This activity is done in | Conversation | | collaboration of the teacher with the students. | Didactical demonstration | | Final exam preparation. | | | | | #### **Bibliography** #### **Books** [Fre10] FRENTIU, M., Verificarea si validarea sistemelor soft, Presa Universitara Clujeana, 2010 [Pres10] R. S. Pressman, Software engineering: a practinioner's approach, seventh edition, Higher Education, 2010 [Crs09] L. Crispin, J. Grecory, Agile testing: a practical guide for testers and agile teams, Addison-Wesley, 2009 [You08] M. Pezzand, M. Young, Software Testing and Analysis: Process, Principles and Techniques, John Wiley & Sons, 2008 [Nai08] K. Naik, P. Tripathy, Software testing and quality assurance. Theory and Practice, A John Wiley & Sons, Inc., 2008 [Kat08] J. P. Katoen, Principles of Model Checking, MIT Press, May 2008 [Pat05] R. Patton, Software Testing, Sams Publishing, 2005 [Mye04] Glenford J. Myers, The Art of Software Testing, John Wiley & Sons, Inc., 2004 [Brn02] I. Brnstein, Practical software testing, Springer, 2002 [Mor90] Morgan, C., Programing from Specifications, Prentice Hall, NewYork, 1990. [Dro89] DROMEY G., Program Derivation. The Development of Programs From Specifications, Addison Wesley Publishing Company, 1989. #### Articles [Kin75] J. Darringer, J. King, Applications of symbolic execution to program testing, 1975 [Dij75] DIJKSTRA, E., Guarded commands, nondeterminacy and formal derivation of programs, CACM, 18(1975), 8, pg.453-457. [Hoa69] HOARE, C.A.R., An axiomatic basis for computer programming, CACM, 12(1969), pg.576-580, 583. #### **Tutorials** During lectures/seminars/laboratories tutorials will be given for each assignment. | 8.2 Seminar / laboratory | Teaching methods | Remarks | |---|-------------------------------|---------| | 1. Seminar 1/Laboratory 1 | Presentation, Conversation, | | | Inspection | Problematizations, Discovery, | | | Inspection tool | Other methods – individual | | | Issue traker tool | study, exercises | | | Test management tool (TestLink) | | | | 2. Seminar 2/Laboratory 2 | Presentation, Conversation, | | | Test cases using Black-box Testing (BBT) | Problematizations, Discovery, | | | Test cases using White-box Testing (WBT) | Other methods – individual | | | Test management tool (TestLink) | study, exercises | | | Continuous Integration tool (Jenkins) | | | | 3. Seminar 3/Laboratory 3 | Presentation, Conversation, | | | Levels of testing - Integration testing | Problematizations, Discovery, | | | Test management tool (TestLink) | Other methods – individual | | | Continuous Integration tool (Jenkins) | study, exercises | | | 4. Seminar 4/Laboratory 4 | Presentation, Conversation, | | | Security testing | Problematizations, Discovery, | | | Test AI/Machine Learning applications | Other methods – individual | | | | study, exercises | | | 5. Seminar 5/Laboratory 5 | Presentation, Conversation, | | | Web testing | Problematizations, Discovery, | | | Web testing tool (e.g. Selenium Web Driver) | Other methods – individual | | | Test management tool (TestLink) | study, exercises | |---------------------------------------|-------------------------------| | Continuous Integration tool (Jenkins) | | | 6. Seminar 6/Laboratory 6 | Presentation, Conversation, | | Correctness. Static analysis | Problematizations, Discovery, | | ESCJava2, JML | Other methods – individual | | | study, exercises | ## Bibliography See references from Lectures. **Remark.** For each seminar, students must be prepared. Various articles/chapters from books are required to be read previous to each seminar. # 9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program - Students will know how to use tools for test management - Students will know how to apply testing methods for a software product. - Students will learn various verification and validation methods of a software system, to design test cases using various criteria (black-box testing, white-box testing) #### 10. Evaluation | Type of activity | 10.1 Evaluation criteria | 10.2 Evaluation methods | 10.3 Share in the grade (%) | |-----------------------------|---|---|---| | 10.4 Course | At the end of the semester a written examination will give a mark E. | Written examination | 50% | | | During lectures hours, two quizzes are given. The mark Q is given. | Two quizzes examination during lectures hours | 10% | | 10.5 Seminar/lab activities | The activity at seminaries, consisting from participation in solving the exercises and discussions will be appreciate by a mark S. | Seminar = Grade for seminar Activity | 20% | | | The activity at laboratories, consisting from participation in solving the exercises and discussions, will be appreciate by a mark L. | Laboratory activity | 20% | | 10.6. Bonus point | Students will have the possibility of obtaining bonus points at the final grade for additional | Bonus point (1 point) | 1 maximal point at
the final grade (after
obtaining the final
minimum required | | activities that are related to | grade 5). | |--------------------------------|-----------| | Software systems | | | verification and validation: | | | conduction research/report | | | and various activities | | | during lectures. | | | An R&D project could | | | also be selected. | | #### Remark. - Seminar/Laboratory assignments/Practical laboratory work may not be redone in the retake session. - Written exams can be taken during the retake session. - Students from Previous Years to the current academic year - o All the above rules apply to students from previous years. - o Seminar/Laboratory assignments and practical laboratory activity must be redone during didactic activity time (in the 12 weeks before normal session). - Laboratory activity: each student will come with it own semi-group. - Laboratory activity: 3 out of 6 laboratories must be delivered. - Late delivery of assignments will be penilized. Maximum 4 weeks are allowed to deliver an assignment. After the deadline, the assignment will be graded with 0. - The final grade computed with the given formula must be at least 5 in order to pass the exam. Final grade=50% WrittenExam+10% Quizes+20% Seminar+20% Laboratory - Attend 75% of seminar activities during semester AND attend 90% of lab activities during semester. ### 10.6 Minimum performance standards - > Students will learn and apply testing methods for a software product. - Students will apply various methods for verification (testing, inspection, model checking) for establishing the correctness of an algorithm. | Date | Signature of course coordinator | Signature of seminar coordinator | |------------------|-----------------------------------|----------------------------------| | 23 April 2021 | Assoc. Prof. PhD. Andreea Vescan, | Assoc. Prof. PhD. Andreea Vescan | | | | | | | Aferran | Server | | Date of approval | Signature | of the head of department | | | Pro | f. PhD. Anca Andreica |