SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş-Bolyai University of Cluj-Napoca
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme /	High Performance Computing and Big Data Analytics
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline (en)		Big Data Processing and Applications					
(ro)							
2.2 Course coordinator			Lect. Dr. Ioana-Georgiana Ciuciu				
2.3 Seminar coordinator			Lect. Dr. Ioana-Georgiana Ciuciu				
2.4. Year of study	2	2.5 Semester	3 2.6. Type of evaluation E 2.7 Type of discipline Compulso				Compulsory
2.8 Code of the discipline		MME8158					

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	2
				seminar/laboratory	
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					35
Additional documentation (in libraries, on electronic platforms, field documentation)					45
Preparation for seminars/labs, homework, papers, portfolios and essays				47	
Tutorship				15	
Evaluations				16	
Other activities:				-	
275 (1: 1: 1 1 1 1		110			1

3.7 Total individual study hours	119
3.8 Total hours per semester	175
3.9 Number of ECTS credits	8

4. Prerequisites (if necessary)

4.1. curriculum	•
4.2. competencies	 Basic knowledge of data analytics, preferably

•	Basic knowledge of data visualization, preferably
•	Programming skills

5. Conditions (if necessary)

5.1. for the course	Room with video projector
5.2. for the seminar /lab	 Room with computers as needed;
activities	 Big Data software installed
	 High level programming language environment

6. Specific competencies acquired

o. speem	c competencies acquired
	 Use of non-traditional databases for storing and processing large amounts of data
Professional competencies	Advanced querying over distributed information resources
Professional competencie	Evaluation, testing and validation with real-world data
P ₁	Learning to conduct incipient research in the field of Big Data
	Methods and algorithms for data processing and analysis applied to Big Data
petencies	 Multidisciplinary competencies spanning various application sectors (e.g., life sciences and bioinformatics, telco, media, finance, security, health, energy, etc.)
Transversal competencies	• Data Science competencies, combining data analyst and data engineer- specific competencies (e.g., competencies from the fields of mathematics, statistics, information science, computer science, databases, machine learning, data mining, visualization, etc.)
Trans	Manifest responsible attitudes towards the scientific and didactic fields

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	Handling (extremely) large amounts of digital data in various formats (text, video, financial, medical, etc.)
7.2 Specific objective of the discipline	Enable the use of novel algorithms, software infrastructures and methodologies for the purpose of processing (store, retrieve, analyze) large amounts of data
	Provide decision support over large volumes of data
	Enable the creation of applications and services for various business
	domains based on the results of big data analysis.

8. Content

8.1 Course	Teaching methods	Remarks
1. Introduction to Data Science and Big Data	Exposure, description,	
	explanation, examples,	

	case studies
2. Industrial Standards for Data Mining	Exposure, description,
Projects	explanation, examples,
	case studies
3. Big Data Architecture – part 1	Exposure, description,
	explanation, examples,
	case studies
4. Big Data Architecture – part 2	Exposure, description,
	explanation, examples,
7. 7. 9.	case studies
5. Data Storage – part 1	Exposure, description,
	explanation, examples,
(D + G	case studies
6. Data Storage – part 2	Exposure, description,
	explanation, examples,
7 D. I.	case studies
7. Data Integration	Exposure, description,
	explanation, examples, case studies
9 Data Warsh avair a great 1	
8. Data Warehousing – part 1	Exposure, description,
	explanation, examples, case studies
9. Data Warehousing – part 2	Exposure, description,
9. Data warehousing – part 2	explanation, examples,
	case studies
10. Data Visualization	Exposure, description,
10. Data Visualization	explanation, examples,
	case studies
11. NoSQL Solutions for Big Data	Exposure, description,
20101011 (211010101010101010101010101010101010101	explanation, examples,
	case studies
12. Big Data Visualization	Exposure, description,
č	explanation, examples,
	case studies
13. Big Data Case Studies	Exposure, description,
	explanation, examples,
	case studies
14. Big Data Project Proposals Presentation	Exposure, description,
	explanation, examples,
Diblic anomby	case studies

Bibliography

N. Marz, J. Warren, Big Data. Principles and Best Practices of scalable real-time systems, Manning Publications, 2015

Frontiers in Big Data Analysis, The National Academies Press, Washington, prepublication draft

- V. Agneeswaran, Big Data Analytics Beyond Hadoop, Pearson Education, 2014
- T. White, Hadoop: The Definitive Guide, O'Reilly, 2009
- D. Miner, A. Shook, MapReduce Design Patterns: Building Effective Algorithms and Analytics for Hadoop and Other Systems, O'Reilly, 2012
- P. K. Janert, Data Analysis with Open Source Tools, O'Reilly, 2010
- Q. E. McCallum, Bad Data Handbook: Cleaning Up The Data So You Can Get Back To Work, O'Reilly, 2012

O'Reilly Radar Team, Big Data Now: Current Perspectives from O'Reilly Radar, 2011

S.T. Allen, Storm Applied, 2015

M. Hamstra, Learning Spark, 2014

- M. Barlow, Real-Time Big Data Analytics: Emerging Architecture, O'Reilly Media, 2013
- J. Janssens, Data Science at the Command Line: Facing the Future with Time-Tested Tools, O'Reilly, 2014
- T. Ojeda et al., Practical Data Science Cookbook, 2014

Data Science and Big Data Analytics, EMC Education Services, 2014

- R. Morisson, Big Data Now, 2014
- G. De Francisci Morales, Big Data and the Web: Algorithms for Data Intensive Scalable Computing IMT Institute for Advanced Studies, 2012
- K Asanivik et al., The Landscape of Parallel Computing Research: A View from Berkeley, 2006
- J. Dean, Big Data, Data Mining and Machine Learning: Value Creation for Business Leaders and Practitioners, Wiley, 2014
- R. Glass and s. Callahan, The Big Data-Driven Business: How to Use Big Data to Win Customers, Beat Competitors, and Boost Profits, Wiley, 2014
- D.L. Herben, Big Data, Big Analytics: Emerging Business Intelligence, 2014
- A. M. Paganoni and P. Secchi, Advances in Complex Data Modeling and Computational Methods in Statistics, Springer, 2014

8.2 Seminar / laboratory	Teaching methods	Remarks
Semester project organized with groups of about 3-	Research-informed	Groups will be monitored
4 students (or more, depending on the requirements	learning	via a project wiki managed
and equipment needed)		with the course/lab the
	Tutorial-based	responsible
Team work will be autonomous (focus on creativity		
and critical thinking)	Problem-solving	The lab takes place every
	approach	two weeks and takes two
Technical tutorials will be provided to support		hours
student work around the most important aspects of	Team work	
Big Data storage and processing (e.g., Hadoop		
shell, PySpark, Data Ingestion with Apache Sqoop,	Big Data solutions for	
NoSQL)	concrete problems and	
	case studies	
Bibliography		
Same as for the course		

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

Synergies with various local and EU innitiatives: local industry, European Data Science Academy (EDSA), EU projects such as FERARI, LIFT, LOD2, Open Data Monitor, Data Publishing through the Cloud, Trendminder, Web Observatory, etc.

Collaboration with the IT industry (e.g., Robert Bosch): invited lectures with real-life use cases, semester project topics.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	- to be familiar with the	Written exam/	50%
	main concepts of the	Evaluation of a research	
	domain	essay	
	- to be able to apply these		
	principles in real-life use		
	cases		
10.5 Seminar/lab activities	- to be able to propose	Semester project	50%
	viable creative solutions		
	to real-life big data		
	challenges		
	- critical thinking		
	- individual/team-based		
	research work		

10.6 Minimum performance standards

- A minimum grade of 5 (on a scale from 1 to 10) is necessary for the written exam, the practical work and the research essay
- > The lab attendance is compulsory at a rate of 90%, according to the decision of the Computer Science Department Council (http://www.cs.ubbcluj.ro/wp-content/uploads/Hotarare-CDI-15.03.2017.pdf)

Date	Signature of course coordinator	Signature of seminar coordinator	
6 May 2019	Lect. Dr. Ioana-Georgiana Ciuciu	Lect. Dr. Ioana-Georgiana Ciuciu	
Date of approval	Signature of the head of department Prof. Dr. Anca Andreica		