SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş-Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme /	High Performance Computing and Big Data Analysis
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline Statistical Computational Methods									
2.2 Course coordinator Assoc. Prof. PhD. Sanda Micula									
2.3 Seminar coordinator				Assoc. Prof. PhD. Sanda Micula					
2.4. Year of	2	2.5	3	2.6. Type of E 2.7 Type of Optional					
study		Semester		evaluation discipline					

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1
				seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6	14
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					41
Additional documentation (in libraries, on electronic platforms, field documentation)					15
Preparation for seminars/labs, homework, papers, portfolios and essays					35
Tutorship				19	
Evaluations				23	
Other activities:				-	
3.7 Total individual study hours		133			•

3.8 Total hours per semester	175
3.9 Number of ECTS credits	7

4. Prerequisites (if necessary)

4.1. curriculum	Probability and Statistics	
4.2. competencies	Logical thinking	
	Average logical programming skills	

5. Conditions (if necessary)

5.1. for the course	• Lecture room with large blackboard and video projector, laptop, beamer
5.2. for the seminar /lab	• For seminar: Laboratory with computers having Matlab installed

6. Specific competencies acquired

orspecial	competencies acquired
Professional competencies	C4.3 Identifying the appropriate models and methods for solving real-life problems C4.4 Using simulations in order to study and elaborate models and evaluate their performance
Transversal competencies	 CT1 Ability to conform to the requirements of organized and efficient work, to develop a responsible approach towards the academic and scientific fields, in order to make the most of one's own creative potential, while obeying the rules and principles of professional ethic CT3 Using efficient methods and techniques for learning, information, research and developing capabilities for using knowledge, for adapting to a dynamic society and for communicating in Romanian and in a worldwide spoken language

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• Acquire basic knowledge of Probability Theory and Mathematical Statistics applications and models
7.2 Specific objective of the discipline	 Ability to use Monte Carlo methods and simulations for solving real- life problems and perform statistical analysis of data Become familiar and be able to work with various probabilistic and statistical models Ability to use statistical features of various mathematical software

8. Content

	Translation and the de	Deveet
8.1 Course	Teaching methods	Remarks
 Review of Probability and Statistics. Probability space. Rules of probability. Conditional probability. Probabilistic models. Random variables and random vectors. 	 Interactive exposure Explanation Conversation Didactical demonstration 	
2. Common discrete and continuous distributions. PDF and CDF. Examples, applications, properties.	 Interactive exposure Explanation Conversation Didactical demonstration 	
 Random samples. Sample functions. Estimators. Confidence intervals. Hypothesis and significance testing. 	Interactive exposureExplanationConversation	
4. Computer simulations and Monte Carlo methods. MC methods and random number generators. Discrete methods. Examples.	 Interactive exposure Explanation Conversation Description 	
 Inverse transform and discrete inverse transform method. Rejection method. Special methods. Examples. 	 Interactive exposure Explanation Conversation Didactical demonstration 	

6. Accuracy of an MC study. Estimating probabilities, means, variances. Size of an	Interactive exposureExplanation	
MC study. Other applications of MC	Conversation	
methods.	 Didactical demonstration 	
7. Stochastic processes. Definitions,	Interactive exposure	
classifications. Markov processes and	• Explanation	
Markov chains. Transition probability	 Conversation 	
matrix. Properties, examples.	Description	
8. Steady-state distribution. Regular Markov	Interactive exposure	
chains. Periodic Markov chains. Simulation	Explanation	
of Markov chains.	Conversation	
	• Didactical demonstration	
9. Counting processes. Binomial and Poisson	• Interactive exposure	
counting processes. Gamma-Poisson	• Explanation	
formula. Simulation of counting processes.	Conversation	
Examples.	• Didactical demonstration	
10. Queuing systems. Basic notions, main	• Interactive exposure	
components, Little's law. Bernoulli single-	Explanation	
server QS. Systems with limited capacity.	Conversation	
11. M/M/1 QS. Evaluation of a system's	Interactive exposure	
performance. Examples.	• Explanation	
	Conversation	
	 Didactical demonstration 	
12. Multiserver QS's. Bernoulli k-server and	Interactive exposure	
$M/M/k$ QS's. $M/M/\infty$ QS's. Simulation of	Explanation	
QS's.	Conversation	
13. Statistical inference . Nonparametric tests,	Interactive exposure	
Chi-square-tests, Wilcoxon tests.	Explanation	
Bootstrapping. Applications, examples,	Conversation	
simulations.	Description	
14. Regression and correlation. Fitting models.	Interactive exposure	
Analysis of variance (ANOVA), prediction.	• Explanation	
Examples.	Conversation	
-	Didactical demonstration	
Bibliography		
1. Micula, S., Probability and Statistics for Comp	outational Sciences, Cluj University	Press, 2009.
2. Baron, M., Probability and Statistics for Comp	•	
Boca Raton, FL, 2014.	ability and Statistica, Driverial	d Applications
3. Milton, J.S., Arnold, J. C., Introduction to Prob for Engineering and the Computing Sciences, 2		11
4. Gentle, J. E., Elements of Computing Sciences,		
5. Matloff, N., From Algorithms to Z-Scores: Pro		
Science, Orange Grove Texts Plus, Gainesville	-	In Computer
6. Gentle, J. E., Hardle, W., Mori, Y., Handbool		nger. Heidelberg
2004.	1	<i>,</i>
8.2 Seminar /Laboratory	Teaching methods	Remarks
1. Random variables and applications.	Interactive exposure	The seminar is
	• Explanation	structured as 2
	Conversation	hours per
		week, every
		other week
2. Computer simulations of discrete random	• Interactive exposure	
variables. Discrete methods.	Explanation	

	 Conversation Individual and group work
 Computer simulations of random variables and Monte Carlo studies. Inverse transform method, rejection method, special methods. 	 Interactive exposure Conversation Synthesis Individual and group work
 Markov chains. Applications and simulations. 	 Interactive exposure Explanation Conversation Individual and group work
 Counting processes. Bernoulli and Poisson counting processes. Applications and simulations. 	 Interactive exposure Explanation Conversation Individual and group work
6. Queuing systems. Examples and simulations.	 Interactive exposure Explanation Conversation Individual and group work
 Statistical inference. Applications and simulations. 	 Interactive exposure Explanation Conversation Description Individual and group work

Bibliography

- 1. Baron, M., Probability and Statistics for Computer Scientists, CRC Press, Taylor and Francis, Boca Raton, FL, 2014.
- 2. Blaga, P., Statistica prin Matlab, Presa Universitara Clujeana, Cluj-Napoca, 2002.
- 3. Lisei, H., Micula, S., Soos, A., Probability Theory trough Problems and Applications, Cluj University Press, 2006.
- 4. Milton, J.S., Arnold, J. C., Introduction to Probability and Statistics: Principles and Applications for Engineering and the Computing Sciences, 3rd Edition. McGraw-Hill, New York, 1995.
- 5. Gentle, J. E., Elements of Computational Statistics, Springer-Verlag, New York, 2002.
- 6. Matloff, N., From Algorithms to Z-Scores: Probabilistic and Statistical Modelling in Computer Science, Orange Grove Texts Plus, Gainesville, FL, 2009.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course gives students solid statistical background for computational intelligence.
- The knowledge and skills acquired in this course give students a foundation for launching a career in scientific research.
- The statistical analysis abilities acquired in this course are useful in any career path students may choose.

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	 acquire the basic principles in Computational Statistics, with emphasis on simulations and Monte Carlo studies; be able to apply correctly the course concepts on various applications and problem solving 	Written exam on problems only (a sheet with the main formulas is available)	60%
10.5 Seminar/Lab activities	 be able to apply course concepts and techniques on practical problems be able to implement course concepts and algorithms in Matlab be able to solve numerical statistical problems in Matlab 	 participation in discussing, solving and implementing problems throughout the semester individual presentation of solutions lab exam (numerical statistical applications and simulations) 	40%
10.7 Minimum performa	nce standards		
A grade of 5 or a seminar/lab evalu		on <u>each</u> activity mentioned al	bove (written test,

Date	Signature of course coordinator	Signature of seminar coordinator
26.04.2019	Assoc. Prof. PhD. Sanda Micula	Assoc. Prof. PhD. Sanda Micula

Date of approval

Signature of the head of department

.....

.....