SYLLABUS

1.1 Higher education institution	"Babes_Bolyai" University
1.2 Faculty	Faculty of Mathematics and Computer science
1.3 Department	Department of Computer Science
1.4 Field of study	Informatics(Computer Science)
1.5 Study cycle	Master
1.6 Study programme / Qualification	High Performance Computing and Big Data Analytics

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the disciplineModels in Parallel Programming							
2.2 Course coordinator Assoc.Prof.PhD. Niculescu Virginia							
2.3 Seminar coordinator				Assoc.Prof.PhD. Niculescu Virginia			
2.4. Year of study	1	2.5 Semester	1	2.6. Type of evaluation	Е.	2.7 Type of discipline	Compulsory

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar/laboratory	1 sem. +1pr.
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6 seminar/laboratory	28
Time allotment:					hours
Learning using manual, course support	rt, bił	oliography, course notes	5		36
Additional documentation (in libraries, on electronic platforms, field documentation)					40
Preparation for seminars/labs, homework, papers, portfolios and essays					42
Tutorship					14
Evaluations					12
Other activities:					-
3.7 Total individual study hours		144			<u> </u>
3.8 Total hours per semester		200			

4. Prerequisites (if necessary)

3.9 Number of ECTS credits

4.1. curriculum	Algorithms construction and evaluation, Data Structures, Object-oriented and functional programming
4.2. competencies	 Programming skills and basic abilities for dealing with abstractions

8

5. Conditions (if necessary)

5.1. for the course	Projector, blackboard
5.2. for the seminar	Projector, blackboard, computers(laptops)

6. Specific competencies acquired

Professional competencies	 Knowledge, understanding of the basic concepts of parallel programming. Ability to work independently and/or in a team in order to solve problems in defined professional contexts (models). Knowledge, understanding of the theoretical foundations of parallel algorithms construction.
Transversal competencies	 Ability to solve problems using parallel programming. Ability to do research work in the domain of the parallel programming by studing a particular model of parallel computation.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• Each student has to prove that (s)he acquired an acceptable level of knowledge and understanding of the subject, that (s)he is capable of stating these knowledge in a coherent form, that (s)he has correct habits of analysis, design, and implementation using different models of parallel computation.
7.2 Specific objective of the discipline	 To present the basic paradigms of parallel programming . To offer different models of parallel programs development and understanding their necessity and their advantages. To create the ability to correctly develop parallel algorithms using different models of parallel computation (algorithms from linear algebra, numerical analysis, graph, searching and sorting algorithms)

8. Content

8.1 Course	Teaching methods	Remarks
 General Introduction to parallel programming: reasons for using parallel programming; problems and difficulties in parallel programming; the necessity of using models Parallel Computer Architectures - <i>Taxonomies</i> 	Exposure: description, explanation, examples, discussion of case studies	
 2. Types of parallelism Implicit parallelism Explicit Parallelism Data-parallel model Message-passing model 	Exposure: description, explanation, examples, discussion of case studies	

- Shared-variable model		
Task Dependency Graph, Task Interaction Graph,		
Degree of Concurrency, Granularity, Mapping		
3. Phases in parallel programs development	Exposure: description,	
(PCAM)	explanation, examples, discussion of case studies	
- Partitioning, Communication, Agglomeration,	discussion of case studies	
Mapping		
Decomposition		
- functional (task decomposition)		
- of the domain(geometrical)		
- data-distributions		
4.	Exposure: description,	
Interconnection networks	explanation, examples,	
	discussion of case studies	
5.	Exposure: description,	
Shared Memory Parallel Programming	explanation, examples,	
, , , ,	discussion of case studies	
Synchronization problems		
OpenMP		
6. Distributed Memory Parallel Programming	Exposure: description,	
- MPI	explanation, examples,	
	discussion of case studies	
7. PRAM models	Exposure: description,	
	explanation, examples,	
Computational networks Brent Theorem	discussion of case studies	
brent meorem		
8.	Exposure: description,	
Analytical Modeling of Parallel Systems	explanation, examples,	
Scalability	discussion of case studies	
9. Parallel programming paradigms	Exposure: description,	
- Master-slaves	explanation, examples,	
- Task-Farm	discussion of case studies	
- Work-Pool		
- Divide &Conquer		
- Pipeline		
10.	Exposure: description,	
Bulk Synchronous Parallel programming	explanation, examples,	
	discussion of case studies	
- BSP		
- LogP		
11. Functional parallel programming	Exposure: description,	
Bird-Meertens Formalism (BMF).	explanation, examples,	
	discussion of case studies	
- List Homomorphisms		
- Categorical Data Types Map-Reduce Model		
12	Exposure: description,	
12.	explanation, examples,	

 Pares – A Model for Parallel Recursive Programs. Special data structures of parallel recursion: PowerLists, ParLists, PLists 	discussion of case studies
 13. Interleaving/ Nondeterminancy/ Formal Methods UNITY "Unbounded Nondeterministic Iterative Transformations" model 	Exposure: description, explanation, examples, discussion of case studies
 CSP(Communicating Sequential Processes) model 	
 14. General presentation of the parallel computation models (PCM). Requierements for PCM Classification: implicit parallelism implicit decomposition explicit decomposition explicit mapping explicit communication everything explicit Main Categories of Models Classification/Comparison of the models for parallel computation. 	Exposure: description, explanation, examples, discussion of case studies

http://www.cs.ubbcluj.ro/~vniculescu/didactic/

Bibliography

- 1. Michael McCool, Arch Robinson, James Reinders, Structured Parallel Programming: Patterns for Efficient Computation," Morgan Kaufmann, 2012 .
- 2. A Pattern Language for Parallel Programming. Berna L. Massingill, Timothy G. Mattson, and Beverly A. Sanders, Addison Wesley Software Patterns Series, 2004.
- 3. Grama, A. Gupta, G. Karypis, V. Kumar. Introduction to Parallel Computing, Addison Wesley, 2003.
- 4. Ian Foster. Designing and Building Parallel Programs, Addison-Wesley 1995.
- 5. K.M. Chandy, J. Misra, Parallel Program Design: A Foundation, Addison-Wesley, 1988.
- 6. M J QUINN. Parallel Programming in C with MPI and OpenMP, McGraw Hill, 2004.
- 7. J. Misra. PowerList: A structure for parallel recursion.ACM Transactions on Programming Languages and Systems, 16(6):1737-1767, November 1994.
- 8. Selim Akl, Parallel Computation: Models and Methods, Prentice Hall, 1997
- 9. B. WILKINSON, C.M. ALLEN. Parallel Programming: Techniques and Applications Using Networked Workstations and Parallel Computers, Prentice Hall, 1999.
- 10. C. A. R. Hoare, Communicating Sequential Processes. June 21, Prentice Hall International, 2004.
- 11. V. Niculescu. Calcul Paralel. Proiectare si dezvoltare formala a programelor paralele. Presa Univ. Clujana, 2006.
- V. Niculescu. PARES A Model for Parallel Recursive Programs, Romanian Journal of Information Science and Technology (ROMJIST), Ed. Academiei Romane, Volume 14(2011), No. 2, pp. 159– 182, 2011
- 13. A.W. Roscoe, The Theory and Practice of Concurrency. Prentice-Hall 1998.
- 14. D. Skillicorn. Foundations of Parallel Programming, Cambridge International Series on Parallel Computations, 1994
- D.B. Skillicorn, D. Talia. Models and Languages for Parallel Computation. ACM Computer Surveys, 30(2) pg.123-136, June 1998.

8.2 Seminar	Teaching methods	Remarks
1. Simple examples of parallel programs.	Explanation, dialogue, case studies	The seminar is structured as 2 hours classes every second week
2. Tehniques used in parallel programs construction.	Dialogue, debate, case studies, examples, proofs	
3. PRAM - examples	Dialogue, debate, case studies, examples, proofs	
4. MPI and OpenMP examples	Dialogue, debate, explanation, examples	
5. Student presentations	Dialogue, debate, explanation, examples	
6. Student presentations	Dialogue, debate, explanation, examples	
7. Student presentations	Dialogue, debate, explanation, examples	

Bibliography

- 1. C. A. R. Hoare. Communicating Sequential Processes was first published in by Prentice Hall International, 2004(revised). [http://www.usingcsp.com/cspbook.pdf]
- 2. D. Grigoras. Calculul Paralel. De la sisteme la programarea aplicatiilor. Computer Libris Agora, 2000.
- 3. Rob H. Bisseling. Parallel Scientific Computation: A Structured Approach using BSP and MPI, Oxford University Press, March 2004. 324 pages.
- 4. Roscoe, A. W. (Revised 2005), The Theory and Practice of Concurrency, Prentice Hall, ISBN 0-13-674409-5
- 5. Parallel Programming Model Watch [http://view.eecs.berkeley.edu/wiki/Parallel Programming Model Watch]

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course respects the IEEE and ACM Curricula Recommendations for Computer Science studies;
- The course exists in the studying program of all major universities in Romania and abroad;

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)		
10.4 Course	- know the basic principles and paradigms of the domain;	Written exam alt. project	60%		
10.5 Seminar	- a research paper (<i>referat</i>) that presents a model of parallel computation	-presentation -discussion	20%		
	-laboratory work		20%		
10.6 Minimum performance standards					
➤ At least grade 5 (from a scale of 1 to 10) at both written exam and research paper.					

 Date
 Signature of course coordinator
 Signature of seminar coordinator

Niculescu Virginia
 Niculescu Virginia

Date of approval

.....

Signature of the head of department

.....