SYLLABUS

1.Information regarding the programme

1.1 Higher education	Babeş-Bolyai University of Cluj-Napoca
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics and Computer Science of the Hungarian
	Line
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme /	Data Modelling and simulation /
Qualification	Adatelemzés és modellezés

2. Information regarding the discipline

2.1 Name of the	disc	1	Metaheuristic Methods / Metaheurisztikus módszerek / Metode Metaeuristice				
2.2 Course coordinator Lect. dr. Sándor Réka							
2.3 Seminar coordinator Lect. dr. Sándor Réka							
2.4. Year of	2	2.5	3	2.6. Type of	E	2.7 Type of	Optional
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2	2	3.3	1
		course		seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5	28	3.6	14
		course		seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					40
Additional documentation (in libraries, on electronic platforms, field documentation)					30
Preparation for seminars/labs, homework, papers, portfolios and essays					34
Tutorship					23
Evaluations				6	
Other activities:				-	
3.7 Total individual study hours		122			

3.7 Total individual study hours	133
3.8 Total hours per semester	175
3.9 Number of ECTS credits	7

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competencies	knowledge of fundamental algorithms, good programming skills,

graduate mathematical knowledge.

5. Conditions (if necessary):

5.1. for the course	classroom with whiteboard and video projector
.2. for the seminar /lab	laboratory with whiteboard and video projector
activities	

6. . Specific competencies acquired

Professional	· basic meta-heuristic methods
competencies	· analyzing hard optimization problems
competencies	· applying meta-heuristic methods to real world problems
Transversal	· analytical thinking
competencies	· problem solving competences

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the		provide an introduction to the field studied.	
discipline	the basic notion, techniques and algorithms.		
7.2 Specific objective of the	ability to analyze hard optimization problems		
discipline		application of meta-heuristics to real world problems	
		· ability to develop new heuristic algorithms.	

8. Content

8.1 Course	Teaching methods	Remarks
· Week 1: Introduction	description, explanation,	
	examples	
 Week 2: Efficiency of metaheuristics 	description, explanation,	
	examples, debate, dialogue	
· Week 3-4: Single state methods: hill	description, explanation,	
climbing, local search methods	examples, dialogue	
 Week 5: Simulated Annealing 	description, explanation,	
	examples, dialogue	
· Week 6: Tabu Search	description, explanation,	
	examples, dialogue	
· Week 7-8: Population based methods:	description, explanation,	
differential evolution, genetic algorithms	examples, dialogue	
· Week 9-10: Swarm Intelligence: Ant colony,	description, explanation,	
Bee colony, Particle Swarm optimization	examples, dialogue	
techniques		
 Week 11-13: Multiobjective Optimization: 	description, explanation,	
multiobjective optimization problem,	examples, debate, dialogue	

non-dominance, weighted sum methods,	
evolutionary multiobjective optimization.	
 Week 14: Comparison of metaheuristics 	description, explanation,
	examples, debate, dialogue

Bibliography

Sean Luke: *Essentials of Metaheuristics*, 2013, Freely available for download at http://cs.gmu.edu/~sean/book/metaheuristics/

Stefan Edelkamp, Peter Norvig: Heuristic Search: Theory and Applications, Elsevier, 2011.

Fred Glover, Gary A. Kochenberger: Handbook of Metaheuristics, Springer, 2010.

El-Ghazali Talbi: Metaheuristics - From Design to Implementation, Wiley, 2009.

Zbigniew Michalewicz, David B. Fogel: How to Solve It: Modern Heuristics, Springer, 2004.

Holger H. Hoos ,Thomas Stützle: Stochastic Local Search, Morgan Kaufmann, 2005.

Sadiq M. Sait, Habib Youssef: *Iterative Computer Algorithms with Applications in Engineering: Solving Combinatorial Optimization Problems*, Wiley, 2000.

Christos H. Papadimitriou, Kenneth Steiglitz: *Combinatorial Optimization.*, Dover Publications, 2nd edition, 1998.

K. Deb: Multiobjective optimization using Evolutionary Algorithms, Wiley, 2001.

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Real-world applications. Benchmarks instances	discussion, dialogue	
2. Problem representation, Local search methods	description, individual work,	
	discussion, dialogue	
3. Simulated Annealing	Description, discussion,	
	individual work, dialogue	
4. Tabu search	Description, discussion,	
	individual work, dialogue	
5. Genetic Algorithms	description, discussion,	
	individual work, dialogue	
6. Project presentations, discussion	description, discussion,	
	individual work, dialogue	

Bibliography

Sean Luke: *Essentials of Metaheuristics*, 2013, Freely available for download at http://cs.gmu.edu/~sean/book/metaheuristics/

Stefan Edelkamp, Peter Norvig: Heuristic Search: Theory and Applications, Elsevier, 2011.

Fred Glover, Gary A. Kochenberger: *Handbook of Metaheuristics*, Springer, 2010.

El-Ghazali Talbi: Metaheuristics - From Design to Implementation, Wiley, 2009.

Zbigniew Michalewicz, David B. Fogel: How to Solve It: Modern Heuristics, Springer, 2004.

Holger H. Hoos, Thomas Stützle: Stochastic Local Search, Morgan Kaufmann, 2005.

Sadiq M. Sait, Habib Youssef: *Iterative Computer Algorithms with Applications in Engineering: Solving Combinatorial Optimization Problems*, Wiley, 2000.

Christos H. Papadimitriou, Kenneth Steiglitz: *Combinatorial Optimization.*, Dover Publications, 2nd edition, 1998.

K. Deb: Multiobjective optimization using Evolutionary Algorithms, Wiley, 2001.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course exists in the studying program of all major universities in Romania and abroad;
- The content of the course is based on the textbook: Essentials of Metaheuristics, available online on the website of the George Mason University (http://cs.gmu.edu/~sean/book/metaheuristics/).

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	know the basic principle of the domain;apply the course conceptsproblem solving	Written exam	50.00%
10.5 Lab activities	able to implement course concepts and algorithmsable to complete a project during the semester	Practical project	50.00%
10.6 Minimum performance standards			
· At least grade 5 (from a scale of 1 to 10) at both written exam and laboratory work.			

DateSignature of course coordinatorSignature of seminar coordinator15.05.2018Lect. dr. Sándor RékaLect. dr. Sándor Réka

Date of approval Signature of the head of department