SYLLABUS

1.Information regarding the programme

1.1 Higher education	Babeş-Bolyai University of Cluj-Napoca
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics and Computer Science of the Hungarian
	Line
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme /	Data Modelling and simulation /
Qualification	Adatelemzés és modellezés

2. Information regarding the discipline

2.1 Name of the	disc	ipline	Me	etaheuristic Methods / Metaheurisztikus módszerek /			
			Metode Metaeuristice				
2.2 Course coord	2.2 Course coordinator Lect. dr. Sándor Réka						
2.3 Seminar coordinator				Lect. dr. Sándor Rék	a		
2.4. Year of	1	2.5	1	2.6. Type of	Ε	2.7 Type of	Optional
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2	2	3.3	1
-		course		seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5	28	3.6	14
		course		seminar/laboratory	
Time allotment:					
Learning using manual, course support, bibliography, course notes					
Additional documentation (in libraries, on electronic platforms, field documentation)					
Preparation for seminars/labs, homework, papers, portfolios and essays					
Tutorship					
Evaluations					
Other activities:					-
3.7 Total individual study hours 133					
3.8 Total hours per semester 175					
3.9 Number of ECTS credits 7					

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competencies	knowledge of fundamental algorithms, good programming skills,

graduate mathematical knowledge.

5. Conditions (if necessary):

5.1. for the course	classroom with whiteboard and video projector
.2. for the seminar /lab	laboratory with whiteboard and video projector
activities	

6. . Specific competencies acquired

Professional	•	basic meta-heuristic methods
	•	analyzing hard optimization problems
competencies	•	applying meta-heuristic methods to real world problems
Transversal	•	analytical thinking
competencies	•	problem solving competences

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the	•	provide an introduction to the field studied.
discipline	•	the basic notion, techniques and algorithms.
7.2 Specific objective of the	•	ability to analyze hard optimization problems
discipline	•	application of meta-heuristics to real world problems
	•	ability to develop new heuristic algorithms.

8. Content

8.1 Cours	e	Teaching methods	Remarks
•	Week 1: Introduction	description, explanation,	
		examples	
•	Week 2: Efficiency of metaheuristics	description, explanation,	
		examples, debate, dialogue	
•	Week 3-4: Single state methods: hill	description, explanation,	
	climbing, local search methods	examples, dialogue	
•	Week 5: Simulated Annealing	description, explanation,	
		examples, dialogue	
•	Week 6: Tabu Search	description, explanation,	
		examples, dialogue	
•	Week 7-8: Population based methods:	description, explanation,	
	differential evolution, genetic algorithms	examples, dialogue	
•	Week 9-10: Swarm Intelligence: Ant colony,	description, explanation,	
	Bee colony, Particle Swarm optimization	examples, dialogue	
	techniques		
	Week 11-13: Multiobjective Optimization:	description, explanation,	
	multiobjective optimization problem,	examples, debate, dialogue	

non-dominance, weighted sum methods,				
evolutionary multiobjective optimization.				
• Week 14: Comparison of metaheuristics	description, explanation,			
	examples, debate, dialogue			
Bibliography				
Sean Luke: Essentials of Metaheuristics, 2013, Freely available	ailable for download at			
http://cs.gmu.edu/~sean/book/metaheuristics/				
Stefan Edelkamp, Peter Norvig: Heuristic Search: Theory	v and Applications, Elsevier, 2011.			
Fred Glover, Gary A. Kochenberger: Handbook of Metaheuristics, Springer, 2010.				
El-Ghazali Talbi: Metaheuristics - From Design to Implementation, Wiley, 2009.				
Zbigniew Michalewicz, David B. Fogel: How to Solve It: Modern Heuristics, Springer, 2004.				
Holger H. Hoos , Thomas Stützle: Stochastic Local Search, Morgan Kaufmann, 2005.				
Sadiq M. Sait, Habib Youssef: Iterative Computer Algorithms with Applications in Engineering: Solving				
Combinatorial Optimization Problems, Wiley, 2000.				
Christos H. Papadimitriou, Kenneth Steiglitz: <i>Combinatorial Optimization.</i> , Dover Publications, 2nd edition, 1998.				

K. Deb: Multiobjective optimization using Evolutionary Algorithms, Wiley, 2001.

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Real-world applications. Benchmarks instances	discussion, dialogue	
2. Problem representation, Local search methods	description, individual work,	
	discussion, dialogue	
3. Simulated Annealing	Description, discussion,	
	individual work, dialogue	
4. Tabu search	Description, discussion,	
	individual work, dialogue	
5. Genetic Algorithms	description, discussion,	
	individual work, dialogue	
6. Project presentations, discussion	description, discussion,	
	individual work, dialogue	

Bibliography

Sean Luke: *Essentials of Metaheuristics*, 2013, Freely available for download at <u>http://cs.gmu.edu/~sean/book/metaheuristics/</u>

Stefan Edelkamp, Peter Norvig: Heuristic Search: Theory and Applications, Elsevier, 2011.

Fred Glover, Gary A. Kochenberger: Handbook of Metaheuristics, Springer, 2010.

El-Ghazali Talbi: Metaheuristics - From Design to Implementation, Wiley, 2009.

Zbigniew Michalewicz, David B. Fogel: How to Solve It: Modern Heuristics, Springer, 2004.

Holger H. Hoos , Thomas Stützle: Stochastic Local Search, Morgan Kaufmann, 2005.

Sadiq M. Sait, Habib Youssef: Iterative Computer Algorithms with Applications in Engineering: Solving Combinatorial Optimization Problems, Wiley, 2000.

Christos H. Papadimitriou, Kenneth Steiglitz: *Combinatorial Optimization.*, Dover Publications, 2nd edition, 1998.

K. Deb: Multiobjective optimization using Evolutionary Algorithms, Wiley, 2001.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course exists in the studying program of all major universities in Romania and abroad;
- The content of the course is based on the textbook: Essentials of Metaheuristics, available online on the website of the George Mason University (<u>http://cs.gmu.edu/~sean/book/metaheuristics/</u>).

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)		
10.4 Course	 know the basic principle of the domain; apply the course concepts problem solving 	Written exam	50.00%		
10.5 Lab activities	 able to implement course concepts and algorithms able to complete a project during the semester 	Practical project	50.00%		
10.6 Minimum performance standards					
• At least grade 5 (from a	scale of 1 to 10) at both writte	en exam and laboratory work.			

Date	
15.05.2018	

Signature of course coordinator Lect. dr. Sándor Réka Signature of seminar coordinator Lect. dr. Sándor Réka

Date of approval

Signature of the head of department