SYLLABUS

${\bf 1.}\ Information\ regarding\ the\ programme$

1.1 Higher education	Babes-Bolyai University of Cluj-Napoca
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master's degree
1.6 Study programme /	Advanced Information Systems
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline (en)			Introduction to Automated Driving				
(ro)			Introducere in sisteme automate de asistenta a conducatorilor				
			auto				
2.2 Course coordinator			Во	Bosch			
2.3 Seminar coordinator			Bosch				
2.4. Year of study 1 2.5 Semester			2	2.6. Type of evaluation	Е	2.7 Type of discipline	Optional
2.8 Code of the discipline MME8160					•		

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	1 sem
				seminar/laboratory	+ 1pr
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:					
Learning using manual, course support, bibliography, course notes					
Additional documentation (in libraries, on electronic platforms, field documentation)					
Preparation for seminars/labs, homework, papers, portfolios and essays					35
Tutorship					
Evaluations					4
Other activities:					12
0.5 m - 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					

3.7 Total individual study hours	119
3.8 Total hours per semester	175
3.9 Number of ECTS credits	7

4. Prerequisites (if necessary)

4.1. curriculum	Computer Programming, Calculus, Linear Algebra, Data structures and algorithms, Artificial intelligence
4.2. competencies	Mathematics, Programming, Analytical understanding

5. Conditions (if necessary)

5.1. for the course	• N/A
5.2. for the seminar /lab	 The presence to application classes is mandatory
activities	

6. Specif	ic competences
	C1: Operating with basic concepts of mathematics, physics, measurement science, mechanical
	engineering, chemical engineering, electrical engineering in systems engineering
	C2: Operating with basic concepts of computer science, information technology and communication
tencies	C3: Operating with fundamentals of control engineering, process modelling, simulation, identification and analysis methods, and computer aided design.
Professional competencies	C4: Design, implementation, testing, operation and maintenance of systems with generic and dedicated equipments, including computer networks for control engineering and applied informatics.
Professi	C5: Development and implementation of automatic control structures and algorithms based on project management principles, software environments and technologies based on microcontrollers, signal processors, programmable logic controllers and embedded systems.
al ies	CT1 Aplicarea regulilor de muncă organizată și eficientă, a unor atitudini responsabile față de domeniul didactic-științific, pentru valorificarea creativă a propriului potențial, cu respectarea principiilor și a normelor de etică profesională
Transversal competencies	CT3 Utilizarea unor metode și tehnici eficiente de învățare, informare, cercetare și dezvoltare a capacităților de valorificare a cunoștințelor, de adaptare la cerințele unei societăți dinamice și de comunicare în limba română și într-o limbă de circulație internațională

7. Disciplines objectives (as results from the key competences gained)

7.1 General objective	 Development of skills for algorithm development in the area of autonomous driving
7.2 Specific objectives	 Understanding the technology and strategies used for autonomous driving
	 Implementation of algorithms for perception and sensor data fusion
	 Implementation of planning and motion control algorithms
	 Have an overview of safety concepts used in autonomous vehicles
	Get an overview on connectivity in vehicles

8. Content

of content		
8.1 Lecture (syllabus)	Teaching	Remarks
	methods	
1. Introduction in automated driving (1 course)	Slides	
2. Ultrasonic and electromagnetic sensors (1 course)	presentation,	
a) Ultrasonic	explanations and	
- Physical principles of operation of ultrasonic sensors	demonstrations,	
- Applications where the sensor is best to be used (technologies for	discussions, case	
driver assistance systems based on ultrasonic sensors)	studies	

b)	LiDAR	
-	Principles of operation and examples	
-	Applications where the sensor is best to be used	
c)	RADAR	
-	Sensor model	
-	Applications where the sensor is best to be used	
3.	Video sensor (3 courses)	
a)	Image processing basics	
-	Image transformations	
-	Image filtering in spatial and frequency domain	
-	Edge detection	
b)	Computer vision basics	
-	Image representation & acquisition	
-	Camera model	
-	Distortion correction	
c)	Stereo video processing	
-	Epipolar geometry basics	
-	Stereo camera model	
-	Rectification	
-	Disparity estimation	
d)	Optical flow	
1	Classification and chiest detection (2 courses)	
	Classification and object detection (3 courses) Machine Learning review	
(a)	Supervised learning	
_	Unsupervised learning	
-	Reinforcement learning	
h)	Deep Learning	
-	Relation to machine learning	
	Deep feedforward networks (cross entropy, regularization, dropout)	
_	Back propagation	
_	Convolutional neural networks	
_	Recurrent neural networks	
_	Examples of DNN architectures	
_	Examples of DIVIV arcintectures	
5.	Sensor data fusion for perception and localization (2 courses)	
-	State estimators and Kalman filter	
-	Extended Kalman filter	
-	Fusion of video and RADAR sensors data	
-	GPS and odometry fusion for localization	
-	Localization techniques & precise mapping	
-	Extended Kalman filter based SLAM using landmarks	
-	Graph based SLAM	
_	Loop closure	
6.	Path planning and motion control for automated driving (2 courses)	
a)	Configuration Space	
-	Mathematical background review	
b)	Ackerman Model	
-	Motivation of differential model	
-	Demonstration of the model	
-	Extension of the model	
-	State space for extended model	
-	Motivation of state space	
-	Mapping to configuration space	
c)	Sampling-based Algorithm	
		 _

- Overview of the sampling based algorithm		
 Based Sampling Theory Knowledge Discreet Ackerman Model 		
- Discreet Ackerman Model - Exploration process		
- Exploration process - Exploring over a grid – A*, polynomial fitting, constrain polynomial		
to Ackerman model		
- Exploring by Rapidly exploring dense trees		
7. Connectivity (2 courses)		
 Introduction to connectivity and cloud computing 		
Big data analytics methods for automated driving		
Bibliography		
IEEE Explore articles on autonomous driving (shared on the courses)		
Automation: From Driver Assistance Systems to Automated Driving, VDA, 20	15	
Automotive handbook, Robert Bosch GmbH, 2007		
9.2. Applications/Cominges	Taashina	Notes
8.2 Applications/Seminars	Teaching methods	Notes
L 1. Introduction and overview	metrious	
L 2. Application with ultrasonic sensors		
L 3. Application with video sensors – part1		
L 4. Application with video sensors – part2		
L 5. Object detection applications – part 1		
20. Coject detection applications—part I		
L 6. Object detection applications – part 2		
L 7. Detection of free space and obstacles – part1		
L 8. Detection of free space and obstacles – part 2		
L 8. Detection of free space and obstacles – part 2		
L 9. Kalman filters – part 1		
•		
L 10. Kalman filters – part 2		
L 11. Path planning – part I		
L 12. Path planning – part II		
2 12.1 um piuming puit ii		
L 13. Application on connectivity and data analytics		
Ribliography		
Bibliography Will be shared at each laboratory		
This de bilated at each tabolatory		

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

• The content of the course and applications is developed together with an Automotive Company.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the			
			grade (%)			
10.4 Course	Evaluation of the acquired	Exam	70 %			
	skills, activity within					
	lectures					
10.5 Seminar/lab activities	Evaluation of the practical	Test and/or evaluation of	30%			
	skills, activity within	activity				
	laboratory classes	-				
10.6 Minimum performance standards						
Exam grade >5, laboratory grade>5						

Date of filling in	Teachers in charge of course	Teachers in charge of seminars
18.04.2018		
Date of approval in the departments		Head of department
		Prof. Dr. Andreica Anca