SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş-Bolyai University Cluj-Napoca
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Master
1.6 Study programme /	Advanced Mathematics
Qualification	

2. Information regarding the discipline

2.1 Name of the	e dis	scipline	Complex analysis in one and higher dimensions (Analizã					
			complexã uni și multi dimensionalã)					
2.2 Course coor	2.2 Course coordinator Professor Gabriela KOHR							
2.3 Seminar co	ordi	nator		Professor Gabriela F	KOHI	R		
2.4. Year of	2	2.5	3	2.6. Type of	Ε	2.7 Type of	DF/Compulsory	
study		Semester		evaluation		discipline		

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1 sem
				seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6	14
				seminar/laboratory	
Time allotment:	•				hours
Learning using manual, course suppo	ort, bił	bliography, course notes	5		46
Additional documentation (in libraries, on electronic platforms, field documentation)					46
Preparation for seminars/labs, homework, papers, portfolios and essays					46
Tutorship					11
Evaluations					9
Other activities:					-
3.7 Total individual study hours		158			

3.7 Total individual study hours	158
3.8 Total hours per semester	200
3.9 Number of ECTS credits	8

4. Prerequisites (if necessary)

4.1. curriculum	 Complex analysis; Real functions; Partial differential equations; Differential and integral calculus in Rⁿ
4.2. competencies	• The are useful logical thinking and mathematical notions and results from the above mentioned fields

5. Conditions (if necessary)

5.1. for the course	Classroom with blackboard/video projector
5.2. for the seminar /lab	Classroom with blackboard/video projector
activities	

6. Specific competencies acquired

lou	cies	•	Ability to understand and manipulate concepts, individual results and advanced mathematical theories.
Professional	competencies	•	Ability to use scientific language and to write scientific reports and papers.
	T.	•	Ability to inform themselves, to work independently or in a team in order to carry out studies and to solve complex problems.
0000100	competencies	•	Ability to use advanced and complementary knowledge in order to obtain a PhD in Pure Mathematics, Applied Mathematics, or in other fields that use concepts in complex analysis.
L State	com	•	Ability for continuous self-perfecting and study.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Knowledge, understanding and use of main concepts and results of complex analysis in one and higher dimensions. Knowledge, understanding and use of methods of complex analysis in the study of special problems in pure and applied mathemnatics. Ability to use and apply concepts and fundamental results of advanced mathematics in the study of specific problems of complex analysis.
7.2 Specific objective of the discipline	 Acquiring basic and advanced knowledge in complex analysis. Understanding of main concepts and results in the theory of holomorphic functions in one and higher dimensions. Knowledge, understanding and use of advanced topics in mathematics in the study of special problems in complex analysis. Ability student involvement in scientific research.

8. Content

8.1 Course	Teaching methods	Remarks
Part I		
1. Analytic branches. Index (winding number).	Lectures, modeling,	
General properties. The Cauchy integral formulas.	didactical demonstration,	
Applications.	conversation. Presentation	
	of alternative explanations.	
2. Cauchy's theorem related to zeros and poles of	Lectures, modeling,	
meromorphic functions. The argument principle.	didactical demonstration,	
Applications.	conversation. Presentation	
	of alternative explanations.	
3. Rouché's theorem. Open mapping theorem and	Lectures, modeling,	
	didactical demonstration,	

	Hurwitz's theorem. Applications.	conversation. Presentation of alternative explanations.	
4.	The Fréchet space $H(\Omega)$. Families of holomorphic functions. Montel and Vitali's theorems. Extremal problems on compact subsets of $H(\Omega)$.	Lectures, modeling, didactical demonstration, conversation. Presentation of alternative explanations.	
5.	Conformal mappings. The automorphisms of the unit disc and the upper half-plane. The automorphisms of the complex plane.	Lectures, modeling, didactical demonstration, conversation. Presentation of alternative explanations.	
6.	The Riemann mapping theorem. Extension to the boundary.	Lectures, modeling, didactical demonstration, conversation. Presentation of alternative explanations.	
7.	Harmonic and subharmonic mappings. Conformal equivalence of annuli.		
Part II			
8.	Holomorphic functions of several complex variables. The generalized Cauchy-Riemann equations. Integral representation of holomorphic functions on the polyidsc. Sequences and series of holomorphic functions in \mathbb{C}^n .	Lectures, modeling, didactical demonstration, conversation. Presentation of alternative explanations.	
9.	Sets of uniqueness for the holomorphic functions in \mathbf{C}^n . The Montel and Vitali theorems. Holomorphic mappings.	Lectures, modeling, didactical demonstration, conversation. Presentation of alternative explanations.	
10.	Biholomorphic mappings in C ⁿ . Fatou-Bieberbach domains. Poincaré's theorem. An n-dimensional version of Hurwitz's theorem for biholomorphic mappings.	Lectures, modeling, didactical demonstration, conversation. Presentation of alternative explanations.	
11.	Cartan's uniqueness theorems. Applications.	Lectures, modeling, didactical demonstration, conversation. Presentation of alternative explanations.	
12.	The automorphisms of the Euclidean unit ball and the unit polydisc in \mathbb{C}^n . Applications.	Lectures, modeling, didactical demonstration, conversation. Presentation of alternative explanations.	
	Holomorphic extension. Hartogs' theorem. Domains of holomorphy. Holomorphic convexity.	Lectures, modeling, didactical demonstration, conversation. Presentation of alternative explanations.	
14.	Introduction to the theory of pseudoconvexity.	Lectures, modeling, didactical demonstration, conversation. Presentation of alternative explanations.	
Diblio	graphy		

Bibliography

1. I. Graham, G. Kohr, *Geometric Function Theory in One and Higher Dimensions*, Marcel Dekker Inc., New York, 2003.

- 2. G. Kohr, *Basic Topics in Holomorphic Functions of Several Complex Variables*, Cluj University Press, Cluj-Napoca, 2003.
- 3. G. Kohr, P.T. Mocanu, *Special Topics of Complex Analysis*, Cluj University Press, Cluj-Napoca, 2005 (in Romanian).
- 4. P. Hamburg, P.T. Mocanu, N. Negoescu, *Mathmatical Analysis (Complex Functions)*, Editura Didacticã și Pedagogicã, București, 1982 (in Romanian).

- 5. C.A. Berenstein, R. Gay, *Complex Variables: An Introduction*, Springer-Verlag New York Inc., 1991.
- 6. J.B. Conway, *Functions of One Complex Variable*, Graduate Texts in Mathematics, 159, Springer Verlag, New York, 1996.
- 7. K. Güerlebeck, K. Habetha, W. Sprößig, *Holomorphic Functions in the Plane and n-Dimensional Space*, Birkhäuser, Basel-Boston-Berlin, 2008.
- 8. R.C. Gunning, *Introduction to Holomorphic Functions of Several Variables*, vol.I. *Function Theory*, Wadsworth & Brooks/Cole, Monterey, CA, 1990.
- 9. S.G. Krantz, *Function Theory of Several Complex Variables*, Reprint of the 1992 Edition, AMS Chelsea Publishing, Providence, Rhode Island, 2001.
- 10. R. Narasimhan, Several Complex Variables, The University of Chicago Press, Chicago, 1971.
- 11. M. Range, *Holomorphic Functions and Integral Representations in Several Complex Variables* Springer-Verlag, New York, 1986.
- 12. W. Rudin, Function Theory in the Unit Ball of Cⁿ, Springer-Verlag, New York, 1980.

8.2 Seminar	Teaching methods	Remarks
Part I		
 Applications of residues theory to the computation of some real integrals. 	Applications of course concepts. Description of arguments and proofs for solving problems. Homework assignments. Direct answers to students.	1 hour/week
 Applications of the argument principle and Rouché's Theorem. 	Applications of course concepts. Description of arguments and proofs for solving problems. Homework assignments. Direct answers to students.	
 Examples of compact families of holomorphic functions. Extremal problems on compact subsets of H(Ω). 	Applications of course concepts. Description of arguments and proofs for solving problems. Homework assignments. Direct answers to students.	
 Sufficient conditions of univalence for holomorphic functions of one complex variable. Examples of univalent functions. 	Applications of course concepts. Description of arguments and proofs for solving problems. Homework assignments. Direct answers to students.	
 Applications of the Riemann mapping theorem. Conformal mappings of special simply connected domains in C (I). 	Applications of course concepts. Description of arguments and proofs for solving problems. Homework assignments. Direct answers to students.	
 Applications of the Riemann mapping theorem. Conformal mappings of special simply connected domains in C (II). 	Applications of course concepts. Description of arguments and proofs for solving problems. Homework assignments. Direct answers to students.	
7. The conformal automorphisms of the extended complex plane.	Applications of course concepts. Description of arguments and proofs for solving problems. Homework assignments. Direct answers to students.	
Part II		
8. Applications of the Cauchy integral representations	Applications of course concepts.	

on the unit polydisc in C ⁿ .	Description of arguments and
on the unit polyaise in C.	
	proofs for solving problems.
	Homework assignments. Direct
	answers to students.
9. Applications of the maximum modulus theorem	Applications of course concepts.
and the Schwarz Lemma for holomorphic functions	Description of arguments and
of several complex variables.	proofs for solving problems.
	Homework assignments. Direct
	answers to students.
10. Harmonic and subharmonic mappings.	Applications of course concepts.
Pluriharmonic and plurisubharmonic mappings.	Description of arguments and
Examples.	proofs for solving problems.
Enterinpress.	Homework assignments. Direct
	answers to students.
11. Sufficient conditions of univalence for	Applications of course concepts.
holomorphic mappings on the unit ball in \mathbb{C}^n .	Description of arguments and
Examples of locally biholomorphic mappings	proofs for solving problems.
	Homework assignments. Direct
and univalent mappings (I).	answers to students.
12. Sufficient conditions of univalence for	Applications of course concepts.
holomorphic mappings on the unit ball in \mathbb{C}^n .	Description of arguments and
	proofs for solving problems.
Examples of locally biholomorphic mappings	Homework assignments. Direct
and univalent mappings (II).	answers to students.
12 Automorphisms of special bounded domains in Cn	Applications of course concepts.
13. Automorphisms of special bounded domains in \mathbb{C}^n .	Description of arguments and
	proofs for solving problems.
	Homework assignments. Direct
	answers to students.
14. Examples of automorphisms of the n-dimensional	Applications of course concepts.
complex space C ⁿ . Fatou-Bieberbach domains.	Description of arguments and
	proofs for solving problems.
	Homework assignments. Direct
	answers to students.

Bibliography

- 1. I. Graham, G. Kohr, *Geometric Function Theory in One and Higher Dimensions*, Marcel Dekker Inc., New York, 2003.
- 2. G. Kohr, *Basic Topics in Holomorphic Functions of Several Complex Variables*, Cluj University Press, Cluj-Napoca, 2003.
- 3. G. Kohr, P.T. Mocanu, *Special Topics of Complex Analysis*, Cluj University Press, Cluj-Napoca, 2005 (in Romanian).
- 4. P. Hamburg, P.T. Mocanu, N. Negoescu, *Mathmatical Analysis (Complex Functions)*, Editura Didacticã și Pedagogicã, București, 1982 (in Romanian).
- 5. C.A. Berenstein, R. Gay, *Complex Variables: An Introduction*, Springer-Verlag New York Inc., 1991.
- 6. J.B. Conway, *Functions of One Complex Variable*, Graduate Texts in Mathematics, 159, Springer Verlag, New York, 1996.
- 7. K. Güerlebeck, K. Habetha, W. Sprößig, *Holomorphic Functions in the Plane and n-Dimensional Space*, Birkhäuser, Basel-Boston-Berlin, 2008.
- 8. R.C. Gunning, *Introduction to Holomorphic Functions of Several Variables*, vol.I. *Function Theory*, Wadsworth & Brooks/Cole, Monterey, CA, 1990.
- 9. S.G. Krantz, Function Theory of Several Complex Variables, Reprint of the 1992 Edition, AMS Chelsea

Publishing, Providence, Rhode Island, 2001.

- 10. R. Narasimhan, Several Complex Variables, The University of Chicago Press, Chicago, 1971.
- 11. R. Narasimhan, Y. Nievergelt, Complex Analysis in One Variable, Birkhäser, 2001.
- 12. M. Range, *Holomorphic Functions and Integral Representations in Several Complex Variables* Springer-Verlag, New York, 1986.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The content of this discipline is in accordance with the curricula of the most important universities in Romania and abroad, where the advanced mathematics plays an essential role. This discipline is useful in preparing future researchers in pure and applied mathematics, as well as those who use mathematical models and advanced methods of study in other areas.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	Knowledge of concepts and basic results	Written exam.	60%
	Ability to justify by proofs theoretical results		
10.5 Seminar/lab activities	Ability to apply concepts and results acquired in the course in mathematical modeling and analysis of problems in pure and applied mathematuics.	Evaluation of reports and homework during the semester, and active participation in the seminar activity. A midterm written test.	15% 25%
	There are valid the official rules of the faculty concerning the attendance of students to teaching activities.		
10.6 Minimum performance	e standards		I
> At least grade 5 (from	n a scale of 1 to 10) at both write	ten exam and seminar activity during th	ne semester.

Date	Signature of course coordinator	Signature of seminar coordinator	
12.04.2018	Professor PhD Gabriela KOHR	Professor PhD Gabriela KOHR	
Date of approval	Signature of the head of department		

Professor Octavian AGRATINI