LEHRVERANSTALTUNGSBESCHREIBUNG

1. Angaben zum Programm

1.1 Hochschuleinrichtung	Babes-Bolyai Universität
1.2 Fakultät	Mathematik und Informatik
1.3 Department	Informatik
1.4 Fachgebiet	Informatik
1.5 Studienform	Bachelor
1.6 Studiengang /	Informatik
Qualifikation	

2. Angaben zum Studienfach

2.1 LV-Bezeichnu	ng	Datenba	Datenbanken				
2.2 Lehrverantwortlicher – Vorlesung				Lekt. Dr. Diana Troancă			
2.3 Lehrverantwortlicher – Seminar		Lekt. Dr. Diana Troancă					
2.4 Studienjahr	2	2.5	3	2.6.	P	2.7 Art der LV	Pflichtfach
		Semester		Prüfungsform			

3. Geschätzter Workload in Stunden

3.1 SWS	5	von denen: 3.2	2	3.3 Seminar/Übung	3
		Vorlesung			
3.4 Gesamte Stundenanzahl im	70	von denen: 3.5	28	3.6 Seminar/Übung	42
Lehrplan		Vorlesung			
Verteilung der Studienzeit:					Std.
Studium nach Handbücher, Kursbuch, Bibliographie und Mitschriften					20
Zusätzliche Vorbereitung in der Bibliothek, auf elektronischen Fachplattformen und durch					20
Feldforschung					
Vorbereitung von Seminaren/Übungen, Präsentationen, Referate, Portfolios und Essays					20
Tutorien					10
Prüfungen					10
Andere Tätigkeiten:					-

3.7 Gesamtstundenanzahl Selbststudium	80
3.8 Gesamtstundenanzahl / Semester	150
3.9 Leistungspunkte	6

4. Voraussetzungen (falls zutreffend)

4.1 curricular	Datenstrukturen und Algorithmen
4.2 kompetenzbezogen	 Programmierungsfähigkeiten

5. Bedingungen (falls zutreffend)

5.1 zur Durchführung der	Videoprojektor
Vorlesung	
5.2 zur Durchführung des	Videoprojektor
Seminars / der Übung	Computers mit den Betriebssystemen Windows und Zugang mit
	einem individuellen Kennwort; MS SQL Server (minimum
	2005) installiert

6. Spezifische erworbene Kompetenzen

Berufliche Kompetenzen	 K 4.1 Erlernen der Grundkonzepte und Prinzipien der Datenbank Struktur K 4.2 Erlernen und Erklären der Modellen für Datenverwaltung in einer Datenbank K 4.3 Das Erlernen von Methoden für konzeptueller Entwurf und Schema Verfeinerungen der Datenbank in unterschiedlichen Projekten
Transversale Kompetenzen	TK1 Anwendung der Regeln für gut organisierte und effiziente Arbeit, für verantwortungsvolle Einstellungen gegenüber der Didaktik und der Wissenschaft, für kreative Förderung des eigenen Potentials, mit Rücksicht auf die Prinzipien und Normen der professionellen Ethik TK3 Anwendung von effizienten Methoden und Techniken für Lernen, Informieren und Recherchieren, für das Entwicklen der Kapazitäten der praktischen Umsetzung der Kenntnisse, der Anpassung an die Bedürfnisse einer dynamischen Gesellschaft, der Kommunikation in
Tran	rumänischer Sprache und in einer internationalen Verkehrssprache

7. Ziele (entsprechend der erworbenen Kompetenzen)

7.1 Allgemeine Ziele der	 Kenntnisse im Umgang mit Datenmodellen, insbesonders das
Lehrveranstaltung	relationale Datenbankmodell Grundkenntnisse der Datenbankkonzepte
7.2 Spezifische Ziele der Lehrveranstaltung	Die Fähigkeit Datenbanken in MS SQL Server zu erstellen und zu verwalten

8. Inhalt

8.1 Vorlesung	Lehr- und Lernmethode	Anmerkungen
 1. Konzepte der Datenbanken. Datenbanken und Datenbankmanagementsysteme Gründe für Datenbank Einsatz Datenmodellierung Konzeptuelle und Logische Modelle Das relationale Datenmodell 	 Vortrag Unterrichtsgespräch Erklärungen Beispiele 	
2. Konzeptueller Entwurf	 Vortrag 	

 UML Klassendiagrame Transformation des konzeptuellen Schemas in einem relationalen Datenmodell Transformation der Klassen in Tabellen 	UnterrichtsgesprächErklärungenBeispiele
 3. Das relationale Datenbankmodell Abstraktionsebene Physische und logische Datenunabhängigkeit Die Relation. Das Schema. Die Primärschlüssel. Die Fremdschlüssel. Die Integritätsbedingung Relationale Datenbankabfragesprachen 	 Vortrag Unterrichtsgespräch Erklärungen Beispiele
 4. Verfeinerung des relationalen Schemas Anomalien in einem schlechten Schema Ziele des Datenbankentwurfs Funktionale Abhängigkeiten. Hülle- Algorithmus Zerlegung eines Relationsschemas Korrektheitskriterien 	 Vortrag Unterrichtsgespräch Erklärungen Beispiele
 5-6. Normalformen Die Normalformen einer Relation: 1NF, 2NF, 3NF, BCNF, 4NF, 5NF (Definition, Beispiele.) Normalisierung Kanonische Überdeckung Mehrwertige Abhängigkeiten 	 Vortrag Unterrichtsgespräch Erklärungen Beispiele
 7. SQL Abfragesprachen in relationalen Datenbanken. Einführung in SQL 	VortragUnterrichtsgesprächErklärungenBeispiele
 8. Relationale Algebra Befehle zur Definierung des Datenbankschemas Befehle zur Datenmanipulation Operationen der Relationenalgebra: Projektion, Selektion, Kartesisches Produkt, Differenz, Vereinigung, Verbund/Join (θ-Join, Equi-Join, Natürlicher Verbund), Umbenennen, Durchschnitt, Division, Aggregat Funktionen, Outer Join (Left Outer Join, Right Outer join, Full Outer Join) 	 Vortrag Unterrichtsgespräch Erklärungen Beispiele
 9. Physische Datenorganisation Struktur eines DBMS Speichermedien Platten als Speichermedien für Dateien: 	VortragUnterrichtsgesprächErklärungen

 Spuren, Blöcke, Seiten Zugriff auf eine Seite RAID Levels Pufferverwaltung in einem DBMS Dateien aus Sätzen Satzformate und Seiteformate 	• Beispiele
 Datenbankindexe Die Indexstruktur. Index Inhalt und Indexierungstechniken Klassifikation der Indexstrukturen: Geclusterte vs. nicht-geclusterte Indexe, dichte vs. dünne Indexe, Primär- vs. Sekundärindexe, Indexe mit einfachen vs. zusammengesetzten Suchschlüsseln, Ein- vs. Mehrstufige Indexe 	 Vortrag Unterrichtsgespräch Erklärungen Beispiele
 Organisation als Binärbaum Optimale vs. Balancierte Binärbäume Index-Sequential Access Method und ISAM Bäume B-Baum, B+-Baum, Präfix B+-Baum Einfügen, Bulk-Einfügen, Suchen und Löschen in Baum-Strukturen Baum-basierte Indexe – Vor- und Nachteile. SQL Indexe Beispiele 	 Vortrag Unterrichtsgespräch Erklärungen Beispiele
 12. Hash-basierte Dateien Hashfunktionen, Kollisionen und Hashing-Behälter Probleme die bei Hashing vorkommen Statisches Hashing mit unabhängigen Listen Statisches Hashing mit verzahnten Listen Statisches Hashing mit offener Adressierung Dynamisches Hashing Lineares Hashing Hash-basierte Indexe – Vor- und Nachteile. SQL Indexe Beispiele 	 Vortrag Unterrichtsgespräch Erklärungen Beispiele
 13. Andere Datenbankmodellen NoSQL Dakumentbasierte Datenbanken Graphendatenbanken, Neo4j Vergleich mit relationalen Datenbanken 	 Vortrag Unterrichtsgespräch Erklärungen Beispiele
14. Aufgaben. Rückblick und Zusammenfassung	VortragUnterrichtsgesprächErklärungen

Beispiele

Literatur in deutscher Sprache:

- 1. KEMPER, A., EEICKLER, A., Datenbanksysteme Eine Einführung, Oldenbourg Verlag, 10. Auflage, 2015
- 2. KEMPER, A., WIMMER, M., Übungsbuch Datenbanksysteme, Oldenbourg Verlag, 3. Auflage, 2012
- 3. STEINER, R., Grundkurs Relationale Datenbanken, Vieweg Teubner, Wiesbaden 2009.
- 4. SKULSCHUSS, M., SQL und relationale Datenbanken, Comelio, 2007.
- 5. KLEINSCHMIDT, P., RANK, C., Relationale Datenbanksysteme, eine praktische Einfuhrung, Springer, 2005.
- 6. MUTSCHLER, B., SPECHT, G., Mobile Datenbanksysteme, Springer, 2004.

Sonstige Literatur:

- 1. BÂSCA, O., Baze de date. Editura All, Bucuresti 1997.
- 2. DATE, C.J., An Introduction to Database Systems (8th Edition), Addison-Wesley, 2004.
- 3. GARCIA-MOLINA, H., ULLMAN, J., WIDOM, J., Database Systems: The Complete Book, Pearson Prentice Hall, 2008
- 4. IONESCU, F. Baze de date Proiectarea bazelor de date, http://info.tech.pub.ro/BD/curs.html
- 5. KNUTH, D.E., Tratat de programare a calculatoarelor. Sortare și căutare. Ed.Tehnica, Bucuresti, 1976
- 6. LITCHFIELD, D., ANLEY, C., HEASMAN, J., GRINDLAY, B., The Database Hacker's Handbook: Defending Database Servers, John Wiley & Sons, 2005.
- 7. RAMAKRISHNAN, R., Database Management Systems. McGraw-Hill, 2007, http://pages.cs.wisc.edu/~dbbook/openAccess/thirdEdition/slides/slides3ed.html
- 8. SILBERSCHATZ A., KORTZ H., SUDARSHAN S., Database System Concepts, McGraw-Hill, 2010, http://codex.cs.yale.edu/avi/db-book/
- 9. TAMBULEA, L. Baze de date, Litografiat Cluj-Napoca 2003.
- 10. ULLMAN, J., WIDOM, J., A First Course in Database Systems (3rd Edition), Addison-Wesley + Prentice-Hall, 2011.

8.2 Seminar / Übung	Lehr- und Lernmethode	Anmerkungen
		Seminar – 2 Stunden jeden
		2 Wochen
S1. SQL - Abfragen	Lösung der Aufgaben,	
	Erklärungen, Beispiele	
S2. SQL - Abfragen	Lösung der Aufgaben,	
	Erklärungen, Beispiele	
S3. Dynamische Ausführung. Cursoren	Lösung der Aufgaben,	
	Erklärungen, Beispiele	
S4. Triggern	Lösung der Aufgaben,	
	Erklärungen, Beispiele	
S5. Indexe im Praxis	Lösung der Aufgaben,	
	Erklärungen, Beispiele	
S6. Komplexe Klausen in SQL	Lösung der Aufgaben,	
	Erklärungen, Beispiele	
S7. Übungen: funktionale Abhängigkeiten,	Lösung der Aufgaben,	
Normalisierung, Operationen auf Baum und	Erklärungen, Beispiele	
Hash-Strukturen		
L1. Datenbank Entwurf mit wenigstens 10	Lösung der Aufgaben,	
Tabellen (Woche 1-2)	Erklärungen, Beispiele	
L2. Daten einfügen in der entworfenen	Lösung der Aufgaben,	
Datenbank (Woche 3)	Erklärungen, Beispiele	

L3. Komplexe SQL Anfragen auf die	Lösung der Aufgaben,
entworfene Datenbank schreiben (Woche 4-6)	Erklärungen, Beispiele
L4. Gespeicherte Prozeduren für die Änderung	Lösung der Aufgaben,
der Datenbankstruktur (Woche 7-8)	Erklärungen, Beispiele
L5. Datenbank erstellen mit Integritätsregeln,	Lösung der Aufgaben,
Daten einfügen und eine Skalarfunktion mit	Erklärungen, Beispiele
Cursor implementieren (Woche 9-10)	
L6. Übung für praktische Prüfung: Datenbank	Lösung der Aufgaben,
modellieren und erstellen, Anfragen schreiben,	Erklärungen, Beispiele
gespeicherte Prozedur und eine	
benutzerdefinierte Funktion erstellen, einen	
Sicht erstellen (Woche 11-12)	
L7. Rückblick (Woche 13)	Unterrichtsgespräch,
	Erklärungen
L8. Praktische Prüfung (Woche 14)	
-	

Literatur

- 1. KEMPER, A., WIMMER, M., Übungsbuch Datenbanksysteme, Oldenbourg Verlag, 3. Auflage, 2012
- 2. THEMSTROM,T. WEBBER, A.,HOTEK, M., MS SQL Server 2008 Database Development, Self Paced Training Kit 2009
- 3. BÂSCA, O., Baze de date. Editura All, Bucuresti 1997.
- 4. DATE, C.J., An Introduction to Database Systems (8th Edition), Addison-Wesley, 2004.
- 5. GARCIA-MOLINA, H., ULLMAN, J., WIDOM, J., Database Systems: The Complete Book, Pearson Prentice Hall, 2008
- 6. IONESCU, F. Baze de date Proiectarea bazelor de date, http://info.tech.pub.ro/BD/curs.html
- 7. KNUTH, D.E., Tratat de programare a calculatoarelor. Sortare și căutare. Ed.Tehnica, Bucuresti, 1976.
- 8. LITCHFIELD, D., ANLEY, C., HEASMAN, J., GRINDLAY, B., The Database Hacker's Handbook: Defending Database Servers, John Wiley & Sons, 2005.
- 9. RAMAKRISHNAN, R., Database Management Systems. McGraw-Hill, 2007, http://pages.cs.wisc.edu/~dbbook/openAccess/thirdEdition/slides/slides3ed.html
- 10. SILBERSCHATZ A., KORTZ H., SUDARSHAN S., Database System Concepts, McGraw-Hill, 2010, http://codex.cs.yale.edu/avi/db-book/
- 11. TAMBULEA, L. Baze de date, Litografiat Cluj-Napoca 2003.
- 12. ULLMAN, J., WIDOM, J., A First Course in Database Systems (3rd Edition), Addison-Wesley + Prentice-Hall, 2011.

9. Verbindung der Inhalte mit den Erwartungen der Wissensgemeinschaft, der Berufsverbände und der für den Fachbereich repräsentativen Arbeitgeber

- Der Kurs folgt die IEEE und ACM Curricula Empfehlungen für das Informatikstudium.
- Der Kurs konzentriert sich auf die Lösung der Probleme die ein Absolvent an seiner zukünftigen Arbeitsstelle lösen muss.

10. Prüfungsform

Veranstaltungsart	10.1 Evaluationskriterien	10.2 Evaluationsmethoden	10.3 Anteil an der
-------------------	---------------------------	--------------------------	--------------------

			Gesamtnote
10.4 Vorlesung	Ein vertieftes Verständnis der im Kurs behandelten Themen	Prüfung	50%
10.5 Seminar / Übung	Die Fähigkeit praktische Probleme direkt am Computer in begrenzter Zeit zu lösen	 Praktische Prüfung am Ende des Semesters (50% aus der Seminar/Übungsnote) Praktische Aufgaben während des Semesters (50% aus der Seminar/Übungsnote) 	50%

10.6 Minimale Leistungsstandards

Um in die Prüfung eingelassen zu werden gelten folgende Kriterien:

- Wenigstens 12 Anwesenheiten bei den Übungen
- Wenigstens 5 Anwesenheiten bei dem Seminar
- Bei den praktischen Aufgaben und bei der praktischen Prüfung muss die Mindestnote 5 erzielt werden

Für das Bestehen der Prüfung gelten folgende Kriterien:

- bei der Klausur muss die Mindestnote 5 erzielt werden
- bei den praktischen Aufgaben muss die Mindestnote 5 erzielt werden
- bei der praktischen Prüfung muss die Mindestnote 5 erzielt werden

Ausgefüllt am:	Vorlesungsverantwortlicher	Seminarverantwortlicher	
	Lekt. Dr. Diana Troancă	Lekt. Dr. Diana Troancă	
Genehmigt im Department am:	Departmentdirektor		
	Prof. Dr. Ar	ndreica Anca	