SYLLABUS

1. Information regarding the programme			
1.1 Higher education	Babeș-Bolyai University, Cluj-Napoca		
institution			
1.2 Faculty	Faculty of Mathematics and Computer Science		
1.3 Department	Department of Computer Science		
1.4 Field of study	Computer Science		
1.5 Study cycle	Bachelor		
1.6 Study programme /	Computer Science		
Qualification			

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the discipline (en)		Da	Data Structures and Algorithms				
(ro)							
2.2 Course coordinator		Le	Lect. PhD. Marian Zsuzsanna				
2.3 Seminar coordinator		Le	Lect. PhD. Marian Zsuzsanna				
2.4. Year of	1	2.5	2	2.6. Type of	Ε	2.7 Type of	Compulsory
study		Semester		evaluation		discipline	
2.8 Code of the		MLE5022					
discipline							

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	1 sem
				seminar/laboratory	+ 1
					lab
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					10
Additional documentation (in libraries, on electronic platforms, field documentation)					6
Preparation for seminars/labs, homework, papers, portfolios and essays					12
Tutorship					6
Evaluations					10
Other activities:					
3.7 Total individual study hours		44			•
3.8 Total hours per semester		100			

4. Prerequisites (if necessary)

3.9 Number of ECTS credits

4.1. curriculum	•	Fundamentals of programming

4

4.2. competencies

• Medium programming skills

5. Conditions (if necessary)

5.1. for the course	Class room with projector
5.2. for the seminar /lab	•
activities	

6. Specific competencies acquired

 	te competencies acquirea
onal ncies	C4.1. Definition of concepts and basic principles of computer science, and their mathematical models and theories.
Professional competencies	C4.3. Identification of adequate models and methods for solving real problems
Pre	C4.5. Adoption of formal models in specific applications from different domains
sal cies	CT1. Apply rules to: organized and efficient work, responsibilities of didactical and scientifical activities and creative capitalization of own potential, while respecting principles and rules for professional ethics
Transversal competencies	CT3. Use efficient methods and techniques for learning, knowledge gaining, and research and develop capabilities for capitalization of knowledge, accommodation to society requirements and communication in English.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• Study of data structures that can be used to implement abstract data types (arrays, linked lists, heaps, hash tables, binary trees).
7.2 Specific objective of the discipline	 Study of the concept of abstract data type and the most frequently used abstract data types in application development. Study of the data structures that can be used to implement these abstract data types. Develop the ability to work with data stored in different data structures and to compare the complexities of their operations. Develop the ability to choose the appropriate data structure in order to model and solve real world problems. Acquire knowledge necessary to work with existing data structure libraries.

8. Content		
8.1 Course	Teaching methods	Remarks
1. Introduction. Data structures. Abstract	- Exposure	
Data Types	- Description	
• Data abstractization and encapsulation	- Examples	
Pseudocode conventions	- Didactical	
Complexities	demonstration	

2. Arrays. Iterators	- Exposure
 Dynamic array 	- Description
• •	- Conversation
Amortized analysisInterface of an iterator	- Didactical
• Interface of an iterator	demonstration
3. Linked Lists	- Exposure
Singly linked list: representation and	- Description
operations	- Conversation
 Doubly linked list: representation and 	- Didactical
operations	demonstration
 Iterator for linked lists 	- Case study
4. Linked Lists II	- Exposure
	- Description
 Sorted linked lists: representation and operations 	- Conversation
1	- Didactical
Circular linked lists: representation and operations	demonstration
and operations	
 Linked lists on arrays: representation and operations 	
5. Abstract Data Types	- Exposure
ADT Set: description, domain,	- Description
interface and possible representations	- Conversation
 ADT Map: description, domain, 	- Didactical
interface and possible representations	demonstration
 ADT Matrix: description, domain, 	
interface and possible representations	
6. Binary Heap	- Exposure
Definition, representations, specific	- Description
operations	- Conversation
HeapSort	- Didactical
ADT List	demonstration
• Description, domain, interface and	
possible representations	
•	
7. ADT Stack	- Exposure
• Description, domain, interface and	- Description
possible representations on arrays and	- Conversation
linked lists	- Didactical
ADT Queue	demonstration
• Description, domain, interface and	- Case studies
possible representations on arrays,	
circular arrays and linked lists.	
Problems solved with stacks and queues	
8. ADT Deque	- Exposure
Description and possible	- Description
representations	- Conversation
ADT Priority Queue	- Didactical
• Description, domain, interface and	demonstration
possible representations on arrays,	- Case studies
linked lists and heaps	
9. Hash Table	- Exposure

 Direct address tables Hash tables: description, properties Collision resolution through separate chaining 10. Hash Table Collision resolution through coalesced hashing Collision resolution through open addressing Containers represented over hash 	 Description Conversation Didactical demonstration Exposure Description Conversation Didactical demonstration
 Concepts related to trees Applications of trees Binary Trees Description, properties Domain and interface of ADT Binary Tree Operations for ADT Binary Tree: search, add, remove elements Tree traversals: recursive/non recursive algorithms. 	 Exposure Description Conversation Didactical demonstration
 12. Binary Search Trees Description, properties Representation Operations: recursive and non-recursive algorithms Containers represented over binary search tables 	 Exposure Description Conversation Didactical demonstration
 13. Balanced Binary Search Trees AVL Trees 	 Exposure Description Conversation Didactical demonstration
14. Applications and data structure libraries in different programming languages (Python, C++, Java, C#) Bibliography	 Examples Exposure Description Conversation Didactical demonstration

- 1. T. Cormen, C. Leiserson, R. Rivest, C. Stein: Introduction to algorithms, Third Edition, The MIT Press, 2009
- 2. S. Skiena: The algorithms design manual, Second Edition, Springer, 2008
- 3. N. Karumanchi: Data structures and algorithms made easy, CareerMonk Publications, 2016
- 4. M. A. Weiss: Data structures and algorithm analysis in Java, Third Edition, Pearson, 2012
- 5. R. Sedgewick: Algorithms, Addison-Wesley Publishing, 1984

8.2 Seminar	Teaching methods	Remarks
		Seminar is structured as 2

	hour classes every second week.
1. Complexities	 Exposure Conversation Examples Debate
 ADT Bag with a generic elements. Representations and implementations on an array. Iterator for ADT Bag. 	 Exposure Examples Debate Conversation
 Sorted Multi Map – representation and implementation on a singly linked list. 	 Exposure Examples Debate Conversation
 Bucket sort, Lexicographic sort, radix sort. Merging two singly linked lists 	 Exposure Examples Debate Conversation
 5. Written test and project theme allocation. 6. Hash tables. Collision resolution through coalesced chaining. 	 Written test Exposure Examples Debate Conversation
7. Binary Trees	 Exposure Examples Debate Conversation

Bibliography

- 1. T. Cormen, C. Leiserson, R. Rivest, C. Stein: Introduction to algorithms, Third Edition, The MIT Press, 2009
- 2. S. Skiena: The algorithms design manual, Second Edition, Springer, 2008
- 3. N. Karumanchi: Data structures and algorithms made easy, CareerMonk Publications, 2016
- 4. M. A. Weiss: Data structures and algorithm analysis in Java, Third Edition, Pearson, 2012
- 5. R. Sedgewick: Algorithms, Addison-Wesley Publishing, 1984

	· · · · ·	
8.3 Laboratory	Teaching methods	Remarks
		Laboratory is structured
		as 2 hour classes every
		second week.
		Laboratory problems
		assigned at a lab, have to
		be presented in the next
		lab.
		Every laboratory focuses
		on a given data structure.
		Students will receive a
		container (ADT) that has
		to be implemented using
		the given data structure.
Lab 1: Dynamic Array	- Exposure	
	- Examples	

	- Conversation
Lab 2: Linked list with dynamic allocation	- Exposure
	- Examples
	- Conversation
Lab 3: Linked lists on arrays	- Exposure
·	- Examples
	- Conversation
Lab 4: Binary heap and problems/functions using	- Exposure
binary heap.	- Examples
	- Conversation
Lab 5: Hash Table	- Exposure
	- Examples
	- Conversation
Lab 6: Binary Search Tree	- Exposure
	- Examples
	- Conversation
Lab 7: Presentation of problem from Lab 6.	- Exposure
-	- Examples
	- Conversation
Diplicanophy	

Bibliography

- 1. T. Cormen, C. Leiserson, R. Rivest, C. Stein: Introduction to algorithms, Third Edition, The MIT Press, 2009
- 2. S. Skiena: The algorithms design manual, Second Edition, Springer, 2008
- 3. N. Karumanchi: Data structures and algorithms made easy, CareerMonk Publications, 2016
- 4. M. A. Weiss: Data structures and algorithm analysis in Java, Third Edition, Pearson, 2012
- 5. R. Sedgewick: Algorithms, Addison-Wesley Publishing, 1984

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The content of this discipline is consistent with the content of the Data structures and algorithms courses from other universities in Romania and abroad.
- The content of the discipline ensures the necessary fundamental knowledge needed for using abstract data types and data structures in application design.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	 Correctness and completeness of the assimilated knowledge Knowledge of applying the course concepts 	Written evaluation (in the exam session): written exam	60%
10.5 Laboratory	• C++ implementation of the concepts and algorithms presented at the lectures	Correctness of the documentation (specifications, algorithms, complexities).	20%

	 Lab assignment documentation documentation Respecting the deadlines for lab presentation 		
10.6 Seminar	 Written test from seminar 5. Project stage 	Written test (70% from the seminar grade) Project stage (30% from seminar grade)	20%

10.6 Minimum performance standards

- Knowledge of the basic concepts. Each student has to prove that he/she has acquired an acceptable level of knowledge and understanding of the domain, that he/she is capable of expressing the acquired knowledge in a coherent form, that he/she has the ability of using this knowledge for problem solving.
- For participating at the written exam, a student must have at least 5 seminar attendances.
- For successfully passing the examination, a student must have at least 5 for the laboratory and as a final grade.

Date	Signature of course coordinator	Signature of seminar coordinator
15.04.2018	Lect. PhD. Marian Zsuzsanna	Lect. PhD. Marian Zsuzsanna

Date of approval

Signature of the head of department

Prof. PhD. Andreica Anca