SYLLABUS

1.1 Higher education	Babeş Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme /	Applied Computational Intelligence
Qualification	

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the	e dis	scipline	Ap	plications of Computa	tional	Linguistics	
2.2 Course coordinatorLecturer PhD. Dana Lupsa							
2.3 Seminar coo	2.3 Seminar coordinator Lecturer PhD. Dana Lupsa						
2.4. Year of	2	2.5	3	2.6. Type of	Ε	2.7 Type of	Compulsory
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	1sem
				seminar/laboratory	+1 pr
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					30
Additional documentation (in libraries, on electronic platforms, field documentation)					44
Preparation for seminars/labs, homework, papers, portfolios and essays					30
Tutorship					20
Evaluations					20
Other activities:					
3.7 Total individual study hours		144			•
3.8 Total hours per semester		200			

4. Prerequisites (if necessary)

3.9 Number of ECTS credits

4.1. curriculum	
4.2. competencies	Average programming skills
	Knowledge of data structures

8

5. Conditions (if necessary)

5.1. for the course	•
5.2. for the seminar /lab	•
activities	

6. Specific competencies acquired

	competences acquired
es al	• Knowledge, understanding and use of IR concepts and their algorithms
Professional competencies	• Knowledge, understanding and use of MT systems
	• Perform Internet-based research.
Transversal competencies	Ability to use techniques specific to information retrieval and machine translation.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Understand how IR and MT systems works Identify techniques for information retrieval, language translation
7.2 Specific objective of the discipline	 Explain basic information storage and retrieval concepts. Describe what issues are specific to efficient information retrieval. Perform Internet-based research. Design and implement a small to medium size information storage and retrieval system, or digital library. Understand techniques for information retrieval, language translation Study the usage of corpora. Identify examples of corpora for MT

8. Content

o. Content		
8.1 Course	Teaching methods	Remarks
1. Information retrieval. A first view.	Exposure, examples,	
	discussion	
2. Information Storage and Retrieval.	Exposure, examples,	
	discussion	
3. Words and meaning; their use in retrieval		
4. Retrieval performances.	Exposure,	
	description,	
	explanation,	
	examples, case	
	studies	
5. Phrase queries	Exposure,	
	description,	
	explanation,	
	examples, case	
	studies	
6. Retrieval models.	Exposure,	
	description,	
	explanation,	
	examples, case	
	studies	
7. Metadata, fields and zones.	Exposure,	
Retrieval optimizations.	description,	

	explanation, examples, case
	studies
8. Relevance feedback	Exposure,
	description,
	explanation,
	examples, case
	studies
9,10. Probabilistic retrieval	Exposure, examples,
	discussion
11. Web as graph. Link analysis	Description,
	examples, case
	studies, discussion
13 Machine translation (MT).	Exposure,
	description,
	explanation,
	examples, case
	studies, discussion
14. Ontologies	Exposure,
	explanation,
	examples, case
	studies, discussion

Bibliography

1. ALLEN, J.F. Natural Language Semantics, Wiley-Blackwell; 1 edition, 2001

2. D. Arnold, L. Balkan, S. Meijer, R. Humphreys, L. Sadler, *Machine Translation: An Introductory Guide, Manchester*, UK: NEC Blackwell, 1994.

3. R. BAEZA-YATES, B. RIBEIRO-NETO, Modern Information Retrieval, Addison-Wesley, 1999

4. E. CHARNIAK: Statistical language learning, MIT Press, 1996.

- 5. O. DAMERON, Ontology-based methods for analyzing life science data. Bioinformatics, Univ. Rennes, 2016
- 6. C.MANNING, H.SCHUTZE, Foundation of statistical natural language processing, MIT, 1999.
- 7. C. MANNING, P. RAGHAVAN, H. SCHUTZE, *Introduction to Information Retrieval*, Cambridge University Press, 2008.
- 8. R. MITKOV ed., *The Oxford Handbook of Computational Linguistics* (Oxford Handbooks in Linguistics), 2005

8.2 Seminar / laboratory	Teaching methods	Remarks
1,2: Knowledge representation in ontologies.	Dialogue, examples	
Examples		
3: Information in text : experiments.	Dialogue, examples	
Ranking examples		
4,5: Applications of theoretical techniques.	Dialogue, case	
Experiments with a corpus	studies, examples	
6,7: Applications and experiments. Advances in	Dialogue, examples,	
CL	case studies	

Bibliography

- 1. R. Mitkov (Ed), Oxford Handbook of Computational Linguistics. Oxford University Press, 2003.
- C.D. Manning, P. Raghavan, H. Schütze, Introduction to Information Retrieval. Cambridge, England: Cambridge University Press, 2008. http://nlp.stanford.edu/IR-book/html/htmledition/irbook.html
- 3. http://www.mt-archive.info/
- 4. http://www.statmt.org/

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- Two fields of CL with immediate applications in real life are IR and MT. IR systems are used on an everyday basis by a wide variety of users. The Internet has proven to be a huge stimulus for MT, with hundreds of millions of pages of text and an increasingly global -- and linguistically diverse public.
- The course respects ACM Curriculla Recommendations for Computer Science studies

10. Evaluation

.....

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	 know the basic principle of the domain; apply the course concepts 	Written exam	60%
10.5 Seminar/lab activities	 apply the course concepts problem solving	Oral presentation / interaction	bonus points added to the final grade for students with activity
		Research report presentations and experiments	40 %
10.7 Minimum performance			
At least grade 5 (fron	n a scale of 1 to 10) at both writt	en exam and research report pre	esentations

DateSignature of course coordinatorSignature of seminar coordinator.....lecturer PhD Dana Lupsalecturer PhD Dana LupsaDate of approvalSignature of the head of department

.....