SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babes-Bolyai University of Cluj-Napoca
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master's degree
1.6 Study programme /	Applied Computational Intelligence
Qualification	Apprior computational intentigence

2. Information regarding the discipline

2.1 Name of the discipline (en)			Introduction to Automated Driving				
(ro)			Introducere in sisteme automate de asistenta a conducatorilor auto				
2.2 Course coordinator			Bosch				
2.3 Seminar coordinator			Bosch				
2.4. Year of	1	2.5	2	2.6. Type of	E	2.7 Type of	Optional
study		Semester		evaluation		discipline	
2.8 Code of theMME8160							
discipline							

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	1 sem
				seminar/laboratory	+ 1 pr
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					23
Additional documentation (in libraries, on electronic platforms, field documentation)					
Preparation for seminars/labs, homework, papers, portfolios and essays					35
Tutorship					4
Evaluations					4
Other activities:					12
3.7 Total individual study hours119					

3.8 Total hours per semester	175
3.9 Number of ECTS credits	7

4. Prerequisites (if necessary)

4.1. curriculum	Computer Programming, Calculus, Linear Algebra, Data		
	structures and algorithms, Artificial intelligence		
4.2. competencies	Mathematics, Programming, Analytical understanding		

5. Conditions (if necessary)

5.1. for the course	• N/A
5.2. for the seminar /lab	• The presence to application classes is mandatory
activities	

6. Specific competences

0. Speen	ic competences
	C1: Operating with basic concepts of mathematics, physics, measurement science, mechanical
	engineering, chemical engineering, electrical engineering in systems engineering
	C2: Operating with basic concepts of computer science, information technology and communication
tencies	C3: Operating with fundamentals of control engineering, process modelling, simulation, identification and analysis methods, and computer aided design.
Professional competencies	C4: Design, implementation, testing, operation and maintenance of systems with generic and dedicated equipments, including computer networks for control engineering and applied informatics.
Professi	C5: Development and implementation of automatic control structures and algorithms based on project management principles, software environments and technologies based on microcontrollers, signal processors, programmable logic controllers and embedded systems.
l les	CT1 Aplicarea regulilor de muncă organizată și eficientă, a unor atitudini responsabile față de domeniul didactic-științific, pentru valorificarea creativă a propriului potențial, cu respectarea principiilor și a normelor de etică profesională
Transversal competencies	CT3 Utilizarea unor metode și tehnici eficiente de învățare, informare, cercetare și dezvoltare a capacităților de valorificare a cunoștințelor, de adaptare la cerințele unei societăți dinamice și de comunicare în limba română și într-o limbă de circulație internațională

7. Disciplines objectives (as results from the key competences gained)

7.1 General objective	• Development of skills for algorithm development in the area of autonomous driving
7.2 Specific objectives	• Understanding the technology and strategies used for autonomous
	driving
	• Implementation of algorithms for perception and sensor data fusion
	• Implementation of planning and motion control algorithms
	• Have an overview of safety concepts used in autonomous vehicles
	• Get an overview on connectivity in vehicles

8. Content

of content		
8.1 Lecture (syllabus)	Teaching	Remarks
	methods	
1. Introduction in automated driving (1 course)	Slides	
2. Ultrasonic and electromagnetic sensors (1 course)	presentation,	
a) Ultrasonic	explanations and	
- Physical principles of operation of ultrasonic sensors	demonstrations,	
- Applications where the sensor is best to be used (technologies for	discussions, case	
driver assistance systems based on ultrasonic sensors)	studies	

b)	LiDAR	
-		Principles of operation and examples	
-		Applications where the sensor is best to be used	
с)	RADAR	
C)	Sensor model	
_			
-		Applications where the sensor is best to be used	
3	{	Video sensor (3 courses)	
a		Image processing basics	
u	()	Image transformations	
-		0	
-		Image filtering in spatial and frequency domain	
-		Edge detection	
b))	Computer vision basics	
-		Image representation & acquisition	
-		Camera model	
-		Distortion correction	
С	;)	Stereo video processing	
-		Epipolar geometry basics	
-		Stereo camera model	
-		Rectification	
-		Disparity estimation	
d	l)	Optical flow	
	- /		
4	ŀ.	Classification and object detection (3 courses)	
a	l)	Machine Learning review	
-		Supervised learning	
-		Unsupervised learning	
-		Reinforcement learning	
b))	Deep Learning	
_	<i>´</i>	Relation to machine learning	
-		Deep feedforward networks (cross entropy, regularization, dropout)	
-		Back propagation	
_		Convolutional neural networks	
_		Recurrent neural networks	
_		Examples of DNN architectures	
5	5.	Sensor data fusion for perception and localization (2 courses)	
-		State estimators and Kalman filter	
-		Extended Kalman filter	
_		Fusion of video and RADAR sensors data	
_		GPS and odometry fusion for localziation	
_		Localization techniques & precise mapping	
_		Extended Kalman filter based SLAM using landmarks	
_		Graph based SLAM	
_		Loop closure	
6	5.	Path planning and motion control for automated driving (2 courses)	
a		Configuration Space	
- -	.)	Mathematical background review	
h))	Ackerman Model	
U)	Motivation of differential model	
-		Demonstration of the model	
-		Extension of the model	
-			
-		State space for extended model	
-		Motivation of state space	
-		Mapping to configuration space Sampling-based Algorithm	
с			

 Overview of the sampling based algorithm Based Sampling Theory Knowledge Discreet Ackerman Model Exploration process Exploring over a grid – A*, polynomial fitting, constrain polynomial to Ackerman model Exploring by Rapidly exploring dense trees 		
 7. Connectivity (2 courses) Introduction to connectivity and cloud computing Big data analytics methods for automated driving 		
Bibliography IEEE Explore articles on autonomous driving (shared on the courses) Automation: From Driver Assistance Systems to Automated Driving, VDA, 20 Automotive handbook, Robert Bosch GmbH, 2007)15	
8.2 Applications/Seminars	Teaching methods	Notes
L 1. Introduction and overview		
L 2. Application with ultrasonic sensors		
L 3. Application with video sensors – part1		
L 4. Application with video sensors – part2		
L 5. Object detection applications – part 1 L 6. Object detection applications – part 2		
L 7. Detection of free space and obstacles – part1		
L 8. Detection of free space and obstacles – part 2		
L 9. Kalman filters – part 1		
L 10. Kalman filters – part 2		
L 11. Path planning – part I		
L 12. Path planning – part II		
L 13. Application on connectivity and data analytics		
Bibliography Will be shared at each laboratory	1	

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

• The content of the course and applications is developed together with an Automotive Company.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)				
10.4 Course	Evaluation of the acquired skills, activity within lectures	Exam	70 %				
10.5 Seminar/lab activities	Evaluation of the practical skills, activity within laboratory classes	Test and/or evaluation of activity	30%				
10.6 Minimum performance standards							
Exam grade >5, laboratory grade>5							

Date of filling in

Teachers in charge of course

Teachers in charge of seminars

18.04.2018

Date of approval in the departments

.....

Prof. Dr. Andreica Anca

Head of department