SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1 6 Study programma /	High Performance Computing and Big Data Analytics
1.6 Study programme /	
Qualification	Profile

2. Information regarding the discipline

2.1 Name of th	e di	scipline					
(en) Res				Resource Aware Computation			
(ro)			Calcul Sensibil la Consumul de Resurse				
226				Acces Drof Eng	Eloviv	Crosius	
2.2 Course coordinator			_	Assoc. Prof. Eng. Florin Craciun			
2.3 Seminar coordinator				Assoc. Prof. Eng.	Florir	n Craciun	
2.4. Year of	2	2.5	3	2.6. Type of	E	2.7 Type of	Optional
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

- 10 thi					
3.1 Hours per week	4	Of which: 3.2	2	3.3	1+1
		course		seminar/laboratory	
3.4 Total hours in the curriculum	56	Of which: 3.5	28	3.6	28
		course		seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					30
Additional documentation (in libraries, on electronic platforms, field documentation)					10
Preparation for seminars/labs, homework, papers, portfolios and essays					59
Tutorship					10
Evaluations					10
Other activities:				-	

3.7 Total individual study hours	119
3.8 Total hours per semester	175
3.9 Number of ECTS credits	7

4. Prerequisites (if necessary)

4.1. curriculum	• None	
4.2. competencies	Basic software development skills	
	 Procedural and Object-oriented paradigms 	

5. Conditions (if necessary)

5.1. for the course	projector
5.2. for the seminar	projector

6. Specific competencies acquired

Professional competencies	 Understanding and working with basic concepts in software engineering; Knowledge, understanding and use of basic concepts of theoretical Computer Science Capability of analysis and synthesis;
	 Proficient use of methodologies and tools specific tool software systems
	Good programming skills in high-level languages
Transversal	Improved programming abilities: debugging and correcting compilers
competencies	errors
	 Ability to apply compiler techniques to different real life problems

7. Objectives of the discipline (outcome of the acquired competencies)

7. Objectives of the discipline	(outcome of the acquired competencies)
7.1 General objective of the	To understand fundamental concepts of software quality.
discipline	
•	To be able to apply basic methods for software analysis and
	software quality assurance.
7.2 Specific objective of	To understand the compiler optimizations
the discipline	 To acquire a modern programming style To understand how the resources(memory, CPU, batery) are used by the programs

8. Content

8.1 Course	Teaching methods	Remarks
1. Program analysis: principles, program	Exposure, description,	
optimizations.	explanation, debate	
	and dialogue,	
	discussion of case	
	studies	
2. Intermediate program representations.	explanation, debate	
	and dialogue,	
	discussion of case	
	studies	
3. Program properties representation. Lattices	Exposure, description,	
	explanation	
4. Dataflow Analysis: principles	Exposure, description,	
	explanation	
5. Forward Dataflow Analysis	Exposure, description,	
	explanation,	
	discussion of case	
	studies	
6. Backward Dataflow Analysis	Exposure, description,	
	explanation,	
	discussion of case	
	studies	
7. Interprocedural Dataflow Analysis	Exposure, description,	
	explanation,	

8. Control-Flow analysis	Exposure, description,
	explanation
9. Alias analysis	Exposure, description,
	explanation,
	discussion of case
	studies
10. Alias analysis	Exposure, description,
	explanation,
	discussion of case
	studies
11. Flow analysis	Exposure, description,
·	explanation,
	discussion of case
	studies
12. Flow analysis	Exposure, description,
·	explanation,
	discussion of case
	studies
13. Taint analysis	Exposure, description,
·	explanation,
	discussion of case
	studies
14. Race analysis	Exposure, description,
	explanation,
	discussion of case
	studies

Bibliography

- 1. Flemming Nielson, Hanne Riis Nielson, Chris Hankin: Principles of ProgramAnalysis, Springer, 1999.
- 2. Advanced Compiler Design and Implementation, by Muchnick. Morgan Kaufmann 1997
- 3. Benjamin C. Pierce. Types and Programming Languages
- 4. Neil D. Jones, Flemming Nielson. Abstract Interpretation: a Semantic-Based Tool for Program Analysis, in: Handbook of logic in computer science (vol. 4). Oxford University Press, 1995

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Research papers presentations	Use practical tools to	Seminar is
	implement group	organized as a
	projects. Discuss	total of 14 hours –
	research papers.	2 hours every
		second week
		Project is every
		week.
2. Dataflow project for a simple object-oriented	Use practical tools to	
language: program representation	implement group	
	projects. Discuss	
	research papers.	
3. Research papers presentations	Use practical tools to	
	implement group	
	projects. Discuss	
	research papers.	
4. Dataflow project for a simple object-oriented	Use practical tools to	

language: intra-procedural analysis	implement group
	projects. Discuss
	research papers.
5. Research papers presentations	Use practical tools to
	implement group
	projects. Discuss
	research papers.
6. Dataflow project for a simple object-oriented	Use practical tools to
language: inter-procedural analysis	implement group
	projects. Discuss
	research papers.
7. Project presentation	Use practical tools to
	implement group
	projects. Discuss
	research papers.
Bibliography	

- research papers
- documentation of the practical tools used by the projects

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course respects the IEEE and ACM Curriculla Recommendations for Software Engineering studies;
- The content of the course is considered by the software companies as important for average software development skills

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in
Type of detivity	10.1 Evaluation criteria	10.2 Evaluation inclineds	the grade (%)
10.4 Course	know the basic principle of the domain;apply the course concepts	Written exam	50.00%
	- problem solving		
10.5 Seminar/lab activities	- be able to implement course concepts	-Practical projects	50.00%
delivities	- be able to do a critical evaluation of research		
	papers - to be able to write a critical		
	essay		
10.6 Minimum perfor	mance standards		
At least grade	5 (from a scale of 1 to 10) at both	written exam and laboratory	work.

Date	Signature of course coordinator	Signature of seminar coordinator
	Assoc. Prof. Eng. Florin CRACIUN	Assoc. Prof. Eng. Florin CRACIUN
