SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş-Bolyai University of Cluj-Napoca
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme / Qualification	High Performance Computing and Big Data Analytics

2. Information regarding the discipline

2.1 Name of the	e dis	scipline		Advanced Methods in Data Analysis				
2.2 Course coordinator Prof.Dr. Horia F. Pop								
2.3 Seminar coordinator				Prof.Dr. Horia F. Po	p			
2.4. Year of	1	2.5	1	2.6. Type of	E	2.7 Type of	Compulsory	
study		Semester		evaluation		discipline		

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar/laboratory	1+1
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6 seminar/laboratory	28
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					25
Additional documentation (in libraries, on electronic platforms, field documentation)					25
Preparation for seminars/labs, homework, papers, portfolios and essays					34
Tutorship					15
Evaluations					10
Other activities:					-

3.7 Total individual study hours	119
3.8 Total hours per semester	175
3.9 Number of ECTS credits	7

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competencies	

5. Conditions (if necessary)

5.1. for the course	•	Students will attend the course with their mobile phones shut down
5.2. for the seminar /lab	•	Students will attend the seminar with their mobile phones shut down
activities	•	Room with computers as needed; high level programming language
		environment

6. Specific competencies acquired

Professional competencies	 Understanding the concepts, methods and models used in intelligent data analysis. Understanding the principles, design and implementation of various data analysis methods Learning to conduct incipient original research in intelligent data analysis
Transversal	 The ability to apply intelligent data analysis methods in solving real world problems. Responsible execution of lab assignments, research and practical reports. Application of efficient and rigorous working rules. Manifest responsible attitudes toward the scientific and didactic fields. Respecting the professional and ethical principles.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the	To introduce the student in advanced methods of data analysis
discipline	
7.2 Specific objective of the	To present the field of intelligent data analysis as a novel research and
discipline	application domain.
	To induce the necessity of intelligent data analysis methods by studying
	some relevant practical applications
	To offer the student the instruments that will allow him/her to develop
	different data analysis applications.

8. Content

8.1	Course	Teaching methods	Remarks
•	Week 1: Administration and organization	Interactive exposure	
		Explanation	
		Conversation	
•	Week 2: Introduction	Interactive exposure	
•	Reference: [Han, ch. 1], [Mitchell, ch. 1]	• Explanation	
		Conversation	
		Didactical demonstration	
•	Week 3: Introduction to Fuzzy sets	Interactive exposure	
•	Reference: [Klir, ch. 2, 3]	• Explanation	
		Conversation	
		Didactical demonstration	
•	Week 4: Fuzzy logic, fuzzy reasoning	Interactive exposure	
•	Reference: [Klir, ch. 8, 10]	• Explanation	
		Conversation	
		Didactical demonstration	
•	Week 5: Fuzzy control systems	Interactive exposure	
•	Reference: [Klir, ch. 12]	• Explanation	
		• Conversation	
		Didactical demonstration	
•	Week 6: Introduction to Rough sets	Interactive exposure	
•	Reference: [Pawlak]	• Explanation	
		Conversation	
		Didactical demonstration	
•	Week 7: Applications of Rough sets	Interactive exposure	
•	Reference: [Ye, ch. 1], [5, ch. 3]	• Explanation	
		Conversation	
		Didactical demonstration	
•	Week 8, 9: Fuzzy Clustering	Interactive exposure	
•	Reference: [Han, ch. 7], [Ye, ch. 10]	• Explanation	
		• Conversation	
		Didactical demonstration	
•	Week 10, 11: Multivariate analysis	Interactive exposure	
•	Reference: [Ye, ch. 7, 8]	• Explanation	
		• Conversation	
		Didactical demonstration	
•	Week 12: Feature extraction, Performance analysis	Interactive exposure	
•	Reference: [Ye, ch. 16, 17]	• Explanation	
		• Conversation	
		Didactical demonstration	

Week 13, 14: Applications of data analysis	Interactive exposure
• Reference: [Ye, ch. 21, 24, 27], [Han, ch. 10, 11]	Conversation
	Didactical demonstration

Bibliography

- J. Han, M. Kamber, Data Mining: Concepts and Techniques, Academic Press, 2001
- G.J. Klir, B. Yuan, Fuzzy Sets and Fuzzy Logic, Prentice Hall, 1995
- T. Mitchell, Machine Learning, McGraw Hill, 1996
- Z. Pawlak, Rough Sets, Polish Academy of Sciences, Gliwice, 2004
- N. Ye, The Handbook of Data Mining, Lawrence Elbaum Associates Publishers, 2003

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Administration. Survey of the sources of	Interactive exposure	
information available on Internet and Intranet.	• Explanation	
Chosing the paper topics and scheduling the	Conversation	
presentations.		
2-3. Delivery of theoretical report	Interactive exposure	
	Explanation	
	Conversation	
4-5. Delivery of experimental report	Interactive exposure	
	Explanation	
	Conversation	
6-7. Delivery of software project	Interactive exposure	
	Explanation	
	Conversation	

Bibliography

- J. Han, M. Kamber, Data Mining: Concepts and Techniques, Academic Press, 2001
- G.J. Klir, B. Yuan, Fuzzy Sets and Fuzzy Logic, Prentice Hall, 1995
- T. Mitchell, Machine Learning, McGraw Hill, 1996
- Z. Pawlak, Rough Sets, Polish Academy of Sciences, Gliwice, 2004
- N. Ye, The Handbook of Data Mining, Lawrence Elbaum Associates Publishers, 2003

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The content of the discipline is consistent with the similar disciplines from other Romanian universities and universities from abroad, as well as with the requirements that potential employers would have in the intelligent data analysis field.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the
10.4 Course	The correctness and completeness of the accumulated knowledge.	Written exam (in the regular session)	grade (%) 30%
	A theoretical research report on a data analysis method or topic, based on some recent research papers should be prepared and presented	Evaluation of the research report (a written paper of about 10 pages and an oral presentation)	15%
10.5 Seminar/lab	Class activity	Grade awarded pro rata	20%
activities	An experimental research report on a data analysis method or topic, based on some recent research	Evaluation of the research report (a written paper of about 10 pages and an oral presentation)	15%

papers should be prepared and presented		
A personal software	Evaluation of the project	20%
project fully implemented,	(software implementation,	
without using existing	documentation and	
libraries of data analysis.	demonstration)	

10.6 Minimum performance standards

Each student has to prove that (s)he acquired an acceptable level of knowledge and understanding of the Intelligent Data Analysis domain, that (s)he is capable of stating these knowledge in a coherent form, that (s)he has the ability to establish certain connections and to use the knowledge in solving different problems.

Penalty points are awarded for delays in submission of proposed topic choices and submission of final reports.

Successful passing of the exam is conditioned by the final grade that has to be at least 5; the written exam grade has to be at least 5.

Date 30.04.2018

Signature of course coordinator Prof. dr. Horia F. Pop Signature of seminar coordinator Prof. dr. Horia F. Pop

Date of approval

Signature of the head of department Prof. dr. Anca Andreica