SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babes-Bolyai University Cluj
institution	
1.2 Faculty	Mathematics and Computer Science
1.3 Department	Mathematics and Computer Science in Hungarian
1.4 Field of study	Computer Science
1.5 Study cycle	master
1.6 Study programme /	Databases
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline 2.2 Course coordinator				Database Systems Implementation			
				Viorica Varga PhD			
2.3 Seminar coordinator				Viorica Varga PhD			
2.4. Year of	1	2.5	1	2.6. Type of	exam	2.7 Type of	required
study Semester evaluation disc				discipline			
2.8 Code of the discipline MME8037							

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1 S
				seminar/laboratory	1 P
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					28
Additional documentation (in libraries, on electronic platforms, field documentation)					14
Preparation for seminars/labs, homework, papers, portfolios and essays					50
Tutorship					
Evaluations					2
Other activities:					

3.7 Total individual study hours	94
3.8 Total hours per semester	150
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1. curriculum	• non
4.2. competencies	• developing applications on relational DBMSs (SQL, relational algebra -
	completed an introductory course on Databases)
	• sorting/searching techniques (quick/merge sorts, binary trees, hash tables -
	course on Design and Analysis of Algorithms)

5. Conditions (if necessary)

5.1. for the course	Video projector
5.2. for the seminar /lab	Visual Studio and Java on the computers in laboratories
activities	

6. Specific competencies acquired

	c competencies acquired
Professional competencies	 have a good insight into how DBMSs function internally understand how to analyse the performance of data-intensive systems be familiar with a variety of programming techniques for large-scale data manipulation apply the insights achieved to build the major components of a mini-DBMS.
Transversal competencies	this course give the basics for query optimization

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 The course objective is the presentation of data storage in databases, buffer management, index techniques, query processing and the overview of query optimization in relational databases. The students will be able to understand query processing in relational databases Implementation of a simple Database Management System (DBMS). 	
7.2 Specific objective of the discipline	 Secondary-storage devices; disk access time; Input/Output model of computation; optimized disk access; 	
	• File and System Structure: page layout and access; buffer management;	
	file organizations (heap, sorted, clustered); row stores versus column stores;	
	• Indexes: Tree-structured (ISAM, B+tree); hash-based (static, extendible,	
	linear); multi-dimensional (UB-tree, k-d-b tree, R-tree)	
	• External Sorting: external n-way merge sort; sorting based on B+trees;	
	• Query Evaluation: Selection (index-based, hash-based, arbitrary	
	selection predicates); projection (duplicate elimination; hash-based,	
	sorting-based); joins (nested-loops, index nested, block nested, sort-	
	merge, hash joins); set operations; aggregation; impact of buffering,	
	pipelining, blocking; evaluation techniques in existing systems;	

8. Content

8.1	Course	Teaching methods	Remarks
1.	The structure of the physical database. The	Presentation	
	structure of the magnetic disc. Optimization of		
	Disk-Block Access. RAID (redundant arrays of		
	independent disks)		
2.	Buffer-replacement policies	Presentation	
3.	File organization: fixed-length records, variable-	Presentation	

		length records, sequential file, heap file, sorted file, multitable clustering file organization. Data				
		dictionary storage				
	4.	Ordered indices, dense and sparse indices and multilevel indices. Index Sequential Access Mechanism. Index update. Primary (clustering) and secondary (unclustering) indices.	Presentation			
	5.	B+-tree index files. Structure of a B+-tree. Queries on B+-trees. Algorithm for update.	Presentation			
		Algorithm for delete in B+-tree. B+-tree file organization.	Presentation			
		B-tree index files. Static hashing, hash indices. Dynamic hashing: extendable hashing, algorithms for update and delete in hash files. Comparison of ordered indexing and hashing.	Presentation			
	8.	Multiple-key access: using multiple single-key indices, indices on multiple keys, bitmaps indices.	Presentation			
	9.	Overview of query processing. Measures of query cost. Basic algorithm for selection implementation. (linear search, binary search, using indices, selections involving comparison)	Presentation			
Ī	10.	Algorithms for external sorting.	Presentation			
	11.	Algorithms for projection, set operations, outer join and aggregation implementation.	Presentation			
	12.	Algorithms for join implementation (nested-loop join, block nested-loop join, indexed nested-loop join, merge join, hash join, cost of algorithms).	Presentation			
	13.	hash join, cost of algorithms Implementation of pipelining.	Presentation			
	14.	Overview of query optimization. Transformation of relational expressions, equivalence rules. Join ordering. Enumeration of equivalent expressions. Estimating statistics of expression results: selection size estimation, join size estimation, size estimation for other operations. Materialized view, it's maintenance and using it in query optimization.	Presentation			
Ī	Bib	pliography				
	[MUW00] H. Garcia-Molina, J. D. Ullman, J. Widom: <i>Database Systems - The Complete Book</i> , Prentice Hall Upper Saddle River, New Jersey, 2008.					
	[RO) 2] R. Ramakrishnan: <i>Database Management System</i>	s, WCB McGraw-Hill,	Boston, 2002.		
	-	KS06]A. Silberschatz, H. Korth, S. Sudarshan: <i>Dat</i>				
		06] V. Varga, Interogarea bazelor de date distribuit	e, Casa Cărții de Știință,	, Cluj-Napoca, 2006.		
ľ	_	Seminar / laboratory	Teaching methods	Remarks		
	1.	Implementation of a complete single-user				

8.2 S	eminar / laboratory	Teaching methods	Remarks
1. In	mplementation of a complete single-user		
re	elational database management system. It		
in	nvolves a significant amount of coding. The		
pı	roject is highly structured, but there is enough		
sl	lack in the specification so that creativity is both		
al	llowed and required.It is recommended to		
in	mplement a server component and a client one.		

	The client can be implemented as Windows	
	interface, Web client or a command line parser.	
2.	The Record Management (RM) Component:	
	implement a set of functions for managing	
	unordered files of database records. (There is	
	recommended to use binary files to implement	
	unordered files). You can consider fix length	
	records; the management of variable length	
	records is optional. One idea to implement the	
	delete operation of a record is the logical delete. It	
	means to store for every record in one bit, which	
	store: the record is deleted or not. In order to not	
	read the whole file to find deleted records and	
	overwrite them with new ones, you can link the	
	deleted records in a stack or queue. The top of the	
	deleted records stack can be stored in the first	
	record of the file. You have to store the system	
	catalog. It will contain table names, index file	
	names. For every table the file name, where the	
	table is stored, the structure of the table, the	
	constraints, the associated index files. For every	
	index file, the search key, the type of it. You can	
	implement the catalog in XML file. In Catalog.xml	
	you can find an example.	
3.	The Indexing (IX) Component: implement a	
	facility for building indexes on records stored in	
	unordered files. The indexing facility will be	
	based on B+ trees or dynamic hashing.	
4.	The Indexing (IX) Component: implement a	
	facility for building indexes on records stored in	
	unordered files. The indexing facility will be	
	based on B+ trees or dynamic hashing.	
5.	The System Management (SM) Component: This	
	part will implement various database and system	
	utilities, including data definition commands (at	
	least integer and character data type), including	
	primary key and foreign key constraint (primary	
	key have to be implemented for one or more	
	columns, but foreign key is optional to implement	
	for more than one column), index definition	
	commands and catalog management. For primary	
	key you will create index file automatic. The	
	System Management component will rely on the	
	Record Management and Indexing components	
	from Parts 1 and 2. It also will use a command-line	
	parser or a graphical user interface.	
6.	The Query Language (QL) Component: In this part	
	students will implement a query language, which	
	consists of user-level data manipulation	
	commands, both queries and updates (SQL Select,	
	Insert, Update, Delete can be used). The Query	
	Language component will use a command-line	
	parser or a graphical user interface. The queries	
	have to be processed, using algorithms presented	
	at the course. Features you have to implement in	
	,	<u> </u>

Select statement: selection, projection, join of tables, aggregation, cumulative functions, (subquery, order by is optional for extra points).				
7. Create a database with 3 tables with the project.				
Update the data and run queries.				
Bibliography				
http://inst.eecs.berkeley.edu/~cs186/sp07/projects.html				
http://research.cs.wisc.edu/coral/mini_doc/minibase.html				

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

• This course is in concordance with the program of similar courses in other universities: http://scpd.stanford.edu/search/publicCourseSearchDetails.do?method=load&courseId=11782 http://www.cs.ox.ac.uk/teaching/courses/databasesystemsimplementation/

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	exam	written test	30
10.5 Seminar/lab activities	mini DBMS project	solve a problem with the project	70
10.6 Minimum perform	nance standards		
working mini D	BMS project		
> 50% in exam			

Date	Signature of course coordinator	Signature of seminar coordinator	
22 April 2018	assoc. prof. Viorica Varga	assoc. prof. Viorica Varga	
Date of approval	Signature of	Signature of the head of department	
30 April 2018			