SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş-Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Matematics
1.5 Study cycle	Master
1.6 Study programme /	Master of Advanced Mathematics
Qualification	

2. Information regarding the discipline

2.1 Name of the	Wavelet Ar	naly	rsis			
discipline						
2.2 Course coordinator		Pr	ofessor Agratini Octa	ivian,	PhD	
2.3 Seminar coordinator	2.3 Seminar coordinator Professor Agratini Octavian, PhD					
2.4. Year of study 2 2.5	Semester 4	1	2.6. Type of		2.7 Type of discipline	DS /
			evaluation	Е		optional

3. Total estimated time (hours/semester of didactic activities)

		· · · · · · · · · · · · · · · · · · ·			
3.1 Hours per week	3	Of which: 3.2 course	2	3.3 seminar	1
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6 seminar	14
Time allotment:					hour
Learning using manual, course support, bibliography, course notes					40
Additional documentation (in libraries, on electronic platforms, field documentation)				44	
Preparation for seminars/labs, homework, papers, portfolios and essays				50	
Tutorship				10	
Evaluations					14
Other activities:					
3.7 Total individual study hours		152			•

3.7 Total mulvidual study nouis	132
3.8 Total hours per semester	42
3.9 Number of ECTS credits	8

4. Prerequisites (if necessary)

4.1 curriculum	Mathematical Analysis Special Topics in Numerical Analysis
4.2 competencies	Comparative assessment and efficient use of various methods of demonstration

5. Conditions (if necessary)

5.1 For the course	•
5.2 For the seminar	•

6. Specific competencies acquired

	• The ability to understand and manipulate concepts, results and theories advanced in
Professional competencies	Mathematics
ioi	
ete	
ofe np	
Pr	• Ability to use the knowledge gained and complementary in achieving a PhD in Mathematics
•	
S	
al cies	
	Ability to self-improvement and to train continuously
Transvers competen	
sue	
Trá	

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• Assimilation of the modern technique of approximation of functions by using Wavelet Analysis.
7.2 Specific objective of the discipline	 Uses knowledge of Fourier transform. Presents major developments in wavelets, Gabor transform, multiresolution analysis. Offers detailed of every concept and method, accompanied by carefully selected worked examples.

8. Content

8.1 Course	Teaching methods	Remarks
1. Wavelets: a positional notation for functions	Interactive exposure:	
-	explanation, conversation	
2. Algebra and geometry of wavelet matrices	Interactive exposure:	
	explanation, conversation	
3. One-dimensional wavelet systems	Interactive exposure:	
	explanation, conversation	
4. Vanishing moments of wavelet bases	Interactive exposure:	
	explanation, conversation	
5. Continuous wavelet transforms	Interactive exposure:	
	explanation, conversation	
6. The discrete wavelet transforms	Interactive exposure:	
	explanation, conversation	
7. Multiresolution analysis	Interactive exposure:	
	explanation, conversation	
8. Sampling, reconstruction and approximation	Interactive exposure:	
	explanation, conversation	
9. Construction of orthonormal wavelets	Interactive exposure:	

	explanation, conversation
10. Image compression	Interactive exposure:
	explanation, conversation
11. Wavelet image compression	Interactive exposure:
	explanation, conversation
12. Harmonic wavelets	Interactive exposure:
	explanation, conversation
13. Wavelet expansion and Parseval's formula	Interactive exposure:
-	explanation, conversation
14. Wavelet transform analysis of turbulence	Interactive exposure:
	explanation, conversation

Bibliography

[1] Agratini, O., Blaga, P., Coman, Gh., *Lectures on Wavelets, Numerical Methods and Statistics*, Casa Cărții de Știință, Cluj-Napoca, 2005.

[2] Lokenath Debnath, Wavelet Transforms & Their Applications, Birkhauser, Boston, 2002.

[3] Resnikoff, H. L., Wells, R. O. Jr., Wavelet Analysis, Springer, New York, 1998.

8.2 Seminar	Teaching methods	Remarks
1-2 Wavelet phase space	Exercise, dialogue,	
	individual study	
3-4 The scaling equations - examples	Exercise, dialogue,	
••••	individual study	
5-6 Polynomial-regular and smooth wavelets	Exercise, dialogue,	
	individual study	
7-8 Quiz and exercises	Exercise, dialogue,	
	individual study	
9-10 Zak transform	Exercise, dialogue,	
	individual study	
11-12 Ambiguity functions	Exercise, dialogue,	
	individual study	
13-14 Mallat's pyramid algorithm	Exercise, dialogue,	
	individual study	
Bibliography		
[1] Lokensth Debneth Wayalat Transforms & Their An	nlications Birkhauser Boston	2002

[1] Lokenath Debnath, Wavelet Transforms & Their Applications, Birkhauser, Boston, 2002.

[2] Truchetet, F., Ondelettes pour le signal numerique, Ed. Hermes, 1998.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- This program covers the necessary basic knowledge in this area
- Software companies consider important in that it provides a solid theoretical foundation in skills development programmer.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	Knowledge of the fundamental elements of the studied field	Written exam	65%
10.5 Seminar	Solving problems	Quiz	25%
		Continuous observations	10%

10.6 Minimum performance standards

• At least grade 5 (from a scale of 1 to 10) at written exam

Date April 10th, 2017 Signature of course coordinator Octavian Agratini Signature of seminar coordinator Octavian Agratini

Date of approval April25th, 2017

Signature of the head of department Octavian Agratini