1.1 Higher education	Babeş-Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Master
1.6 Study programme /	Advanced Mathematics
Qualification	

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the	dis	scipline	Ca	Lategory theory			
2.2 Course coor	din	ator	Prof.PhD. Septimiu Crivei				
2.3 Seminar coo	ordi	nator	Prof.PhD. Septimiu Crivei				
2.4. Year of	2	2.5	2	2.6. Type of	С	2.7 Type of	Optional
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1
				seminar/laboratory	
3.4 Total hours in the curriculum	36	Of which: 3.5 course	24	3.6	12
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course suppor	t, bił	oliography, course notes	5		36
Additional documentation (in libraries, on electronic platforms, field documentation)					36
Preparation for seminars/labs, homework, papers, portfolios and essays				68	
Tutorship					12
Evaluations					12
Other activities:					
3.7 Total individual study hours		164			
3.8 Total hours per semester		200			

4. Prerequisites (if necessary)

3.9 Number of ECTS credits

4.1. curriculum	Algebraic structures
4.2. competencies	•

8

5. Conditions (if necessary)

5.1. for the course	•
5.2. for the seminar /lab	•
activities	

6. Specific competencies acquired

nal cies	•	Ability to operate with abstract concepts.
Professio competen	•	Ability to apply the acquired knowledge to subdomains of mathematics.
Se	•	Development of abstract thinking.
Transversal competencie	•	Ability to perform research.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• To acquire the basic knowledge on category theory.
7.2 Specific objective of the discipline	• To acquire specific working techniques.

8. Content

8.1 Course	Teaching methods	Remarks
1. Categories - definition and examples	Exposition, proof, examples	
2. Special objects and morphisms	Exposition, proof, examples	
3. Products and coproducts	Exposition, proof, examples	
4. Pullbacks and pushouts	Exposition, proof, examples	
5. Limits and colimits	Exposition, proof, examples	
6. Generators and cogenerators	Exposition, proof, examples	
7. Abelian categories	Exposition, proof, examples	
8. Adjoint functors	Exposition, proof, examples	
9. Equivalence of categories	Exposition, proof, examples	
10. Grothendieck categories	Exposition, proof, examples	
11. Functor categories	Exposition, proof, examples	
12. Exact categories	Exposition, proof, examples	

Bibliography

- 1. S. Awodey, Category theory, Oxford University Press, 2010.
- 2. S. Mac Lane, Categories for the working mathematician, Springer, 1998.
- 3. B. Mitchell, *Theory of categories*, Academic Press, New York, London, 1965.
- 4. C. Nastasescu, Inele, module, categorii (in Romanian), Editura Academiei, Bucuresti, 1976.
- 5. I. Purdea, Tratat de algebra moderna, vol. II (in Romanian), Editura Academiei, Bucuresti, 1982.

<i>,</i> 0 <i>, ,</i>		
8.2 Seminar / laboratory	Teaching methods	Remarks
1. Categories - definition and examples	Explanation, problematization, examples	
2. Special objects and morphisms	Explanation, problematization, examples	
3. Products and coproducts	Explanation, problematization, examples	
4. Pullbacks and pushouts	Explanation, problematization, examples	
5. Limits and colimits	Explanation, problematization, examples	
6. Generators and cogenerators	Explanation, problematization, examples	
7. Abelian categories	Explanation, problematization, examples	

8. Adjoint functors	Explanation, problematization, examples
9. Equivalence of categories	Explanation, problematization, examples
10. Grothendieck categories	Explanation, problematization, examples
11. Functor categories	Explanation, problematization, examples
12. Exact categories	Explanation, problematization, examples

Bibliography

1. S. Awodey, *Category theory*, Oxford University Press, 2010.

2. S. Mac Lane, Categories for the working mathematician, Springer, 1998.

3. B. Mitchell, Theory of categories, Academic Press, New York, London, 1965.

4. C. Nastasescu, Inele, module, categorii (in Romanian), Editura Academiei, Bucuresti, 1976.

5. I. Purdea, Tratat de algebra moderna, vol. II (in Romanian), Editura Academiei, Bucuresti, 1982.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

• The contents is directed towards theory and applications of categories. The topic is present in many master programs from other universities.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the		
			grade (%)		
10.4 Course	Use of basic concepts,	Test, project.	25		
	examples				
10.5 Seminar/lab activities	Problem solving	Presentation, assignments.	75		
10.6 Minimum performance standards					
Crade 5					

DateSignature of course coordinatorSignature of seminar coordinator30.04.2017Prof.PhD. Septimiu CRIVEIProf.PhD. Septimiu CRIVEI

Date of approval

Signature of the head of department

Prof.PhD. Octavian AGRATINI