SYLLABUS

8 8		
1.1 Higher education	Universitatea Babeș-Bolyai Cluj-Napoca	
institution		
1.2 Faculty	Matematică și Informatică	
1.3 Department	Matematică	
1.4 Field of study	Matematică	
1.5 Study cycle	Master	
1.6 Study programme /	Advanced Mathematics	
Qualification		

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the discipline Modules and Abelian Categories								
2.2 Course coor	dina	ator	Assoc. Prof. Simion Breaz					
2.3 Seminar coordinator				Assoc. Prof. Simion Breaz				
2.4. Year of	2	2.5	3	2.6. Type of E 2.7 Type of DS				
study		Semester		evaluation		discipline		

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1
				seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5 course	24	3.6	14
				seminar/laboratory	
Time allotment:					
Learning using manual, course support, bibliography, course notes					
Additional documentation (in libraries, on electronic platforms, field documentation)					
Preparation for seminars/labs, homework, papers, portfolios and essays					32
Tutorship					40
Evaluations					18
Other activities:					
3.7 Total individual study hours 158					
3.8 Total hours per semester 200					

4. Prerequisites (if necessary)

3.9 Number of ECTS credits

4.1. curriculum	
4.2. competencies	

8

5. Conditions (if necessary)

5.1. for the course	
5.2. for the seminar /lab	
activities	

6. Specific competencies acquired

l SS	Knowledge, understanding and use of main concepts and results in from module theory
iona incie	(injectivity, projectivity, finiteness conditions)
ofessi apete	Ability to extend fundamental theoretical concepts from Module Theory to Category
Pro com	Theory in order to apply these in other particular cases.
	Ability to inform themselves, to work independently or in a team;
rsal ncies	Ability to approach complex problems and to use information from various specific fields;
Fransve compete	Ability to identify and use advanced techniques and methods in order to realize a specific research.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	Knowledge, understanding and use of main concepts and results about modules and abelian categories
	Ability to use concepts and fundamental results in some specific fields (abelian groups, modules over commutative rings, Grothendieck categories)
7.2 Specific objective of the discipline	Understanding the basic concepts about modules and abelian categories. Ability to use specific results and tools in order to study various categories.

8. Content

8.1 Course	Teaching methods	Remarks
1. Basic notions	Lectures, didactical	
	demonstration,	
	conversation.	
2. Direct sums and direct products	Lectures, didactical	
	demonstration,	
	conversation.	
3. Functors	Lectures, didactical	
	demonstration,	
	conversation.	
4. Injective and projective modules	Lectures, didactical	
	demonstration,	
	conversation.	
5. Finiteness conditions	Lectures, didactical	
	demonstration,	
	conversation.	
6. Co-finiteness conditions	Lectures, didactical	
	demonstration,	
	conversation.	

7. Purity	Lectures, didactical
	demonstration,
	conversation.
8. Pure-injective/projective modules	Lectures, didactical
	demonstration,
	conversation.
9. Hereditary rings and generalizations	Lectures, didactical
	demonstration,
	conversation.
10. Modules over PID	Lectures, didactical
	demonstration,
	conversation.
11. Natural transformations	Lectures, didactical
	demonstration,
	conversation.
12. Equivalences and dualities	Lectures, didactical
	demonstration,
	conversation.

Bibliography

1. Anderson, F.W., Fuller, K.R.: Rings and Categories of Modules, Graduate Texts in Math. Vol. 13, Springer-Verlag, 1992.

2.Lam, T.Y.: Lectures On Modules and Rings, Graduate Texts in Math. Vol. 189, Springer-Verlag, 1999.

3.Lam, T.Y.: A First Course in Noncommutative rings, Graduate Texts in Math. Vol. 131, Springer-Verlag, 1991.

4. Stenstrom, B.: Ring of Quotients, Graduate Texts in Math., Springer-Verlag, 1975.

5. Wickless, W.: A First Course in Graduate Algebra, Taylor and Francis, 2004.

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Basic notions	problematization,	
	exercises, problem	
	solving,	
2. Direct sums and direct products	problematization,	
	exercises, problem	
	solving,	
3. Functors	problematization,	
	exercises, problem	
	solving,	
4. Injective and projective modules	problematization,	
	exercises, problem	
	solving,	

5. Finiteness conditions	problematization, exercises, problem
6 Co finitanass conditions	nrohlamatization
0. Co-minteness conditions	exercises, problem
	solving,
7. Purity	problematization,
	exercises, problem
	SUIVING,
8. Pure-injective/projective modules	problematization,
	exercises, problem
	solving,
9. Hereditary rings and generalizations	problematization,
	exercises, problem
	solving,
10. Modules over PID	problematization,
	exercises, problem
	solving,
11. Natural transformations	problematization,
	exercises, problem
	solving,
12. Equivalences and dualities	problematization,
	exercises, problem
	solving,

Bibliography

1. S. Breaz, G. Calugareanu, G. Modoi, D. Valcan: Exercices in Abelian Group Theory, Kluwer 2003.

2. Lam, T.Y.: Exercices in Classical Ring Theory, Problem Books in Mathematics, Springer-Verlag, 1995.

3. Lam, T.Y.: Exercices in Modules and Rings, Problem Books in Mathematics, Springer-Verlag, 2007.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The content is in accordance with the curricula of many important universities where pure mathematics plays important places in their research.

This discipline is useful since it realizes connections between various mathematical domains, and it is well known that the methods of homological algebra were used during the time to solve important problems in mathematics.

The methods and tools presented here are often used in specifical PhD research activities.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the			
			grade (%)			
10.4 Course	Concepts and basic results	Final exam	50%			
	Standard examples					
10.5 Seminar/lab activities	Ability to use the concepts	Final exam and a midterm	25%+25%			
	in order to solve problems	test.				
10.6 Minimum performance standards						
At least grade 5 from 10.						

Date	Signature of course coordinator	Signature of seminar coordinator
30.04.2017	Assoc. Prof. Simion Breaz	Assoc. Prof. Simion Breaz

Date of approval

Signature of the head of department

.....

Prof. Octavian Agratini