SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş-Bolyai University Cluj-Napoca
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Master
1.6 Study programme /	Advanced Mathematics (Matematici avansate)
Qualification	

2. Information regarding the discipline

2.1 Name of the	dis	scipline	Potential theory and elliptic boundary value problems (Teoria					
			potențialului și probleme eliptice pe frontierã)					
2.2 Course coordinator Professor Mirela KOHR								
2.3 Seminar coordinator I				Professor Mirela KO	HR			
2.4. Year of	2	2.5	4	2.6. Type of	E	2.7 Type of	Optional/DS	
study		Semester		evaluation		discipline		

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1 sem
				seminar/laboratory	
3.4 Total hours in the curriculum	36	Of which: 3.5 course	24	3.6	12
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					42
Additional documentation (in libraries, on electronic platforms, field documentation)					35
Preparation for seminars/labs, homework, papers, portfolios and essays				42	
Tutorship					25
Evaluations					20
Other activities:					-
2.7 Total individual atudy hours		164			

3.7 Total individual study hours	164
3.8 Total hours per semester	200
3.9 Number of ECTS credits	8

4. Prerequisites (if necessary)

4.1. curriculum	Mathematical Methods in Fluid Mechanics; Nonlinear Partial
	Differential Equations; Functional Analysis
4.2. competencies	• There are useful logical thinking and mathematical notions and results from the above mentioned fields

5. Conditions (if necessary)

5.1. for the course	Classroom with blackboard/video projector
5.2. for the seminar /lab	Classroom with blackboard/video projector
activities	

6. Specific competencies acquired

0. Speci	IIC C	ompetencies acquired
	•	Ability to understand and manipulate concepts, individual results and advanced mathematical
Professional competencies	•	Ability to model and analyze from the mathematical point of view real processes from other sciences, fluid mechanics and porous media, economics, and engineering. Ability to use scientific language and to write scientific reports and papers.
	•	Ability to inform themselves, to work independently or in a team in order to carry out studies
		and to solve complex problems.
Transversal competencies	•	Ability to use advanced and complementary knowledge in order to obtain a PhD in Pure Mathematics, Applied Mathematics, or in other fields that use mathematical models.
Tran	•	Ability for continuous self-perfecting and study.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Knowledge, understanding and use of main concepts and results of potential theory in the study of linear elliptic boundary value problems. Knowledge, understanding and combine advances mathematical methods, potential theory, the fixed point theory and topological degree theory in the study of nonlinear elliptic boundary value problems in fluid mechanics, porous media, and other sciences.
7.2 Specific objective of the discipline	 Acquiring basic and advanced knowledge in potential theory. Knowledge, understanding and use of advanced topics in mathematics in the study of elliptic boundary value problems. Ability student involvement in scientific research.

8. Content

8.	1 Course	Teaching methods	Remarks
1.	Boundary value problems for the Laplace operator.	Lectures, modeling, didactical	
	Classical solutions and layer potential	demonstration, conversation.	
	representations	Presentation of alternative explanations.	
2.	Basic theory of pseudo-differential operators on	Lectures, modeling, didactical	
	\mathbf{R}^{n} : The class \mathbf{S}^{m} . The definition of a pseudo-	demonstration, conversation.	
	differential operator of order m. Continuity of	Presentation of alternative explanations.	
	pseudo-differential operators in Sobolev spaces.		
3.	Elliptic pseudo-differential operators on \mathbf{R}^{n} .	Lectures, modeling, didactical	
	Parametrix and fundamental solution.	demonstration, conversation.	
		Presentation of alternative explanations.	
4.	Strongly elliptic operators and elliptic systems in	Lectures, modeling, didactical	
	the sense of Agmon-Douglis-Nirenberg on \mathbf{R}^{n} . The	demonstration, conversation.	
	Stokes and Brinkman systems. Fredholm operators	Presentation of alternative explanations.	

5.	Potential theory for the Stokes and Brinkman	Lectures, modeling, didactical	
	systems on Lipschitz domains in \mathbf{R}^{n} (I):	demonstration, conversation.	
	Fundamental solutions and related layer potential	Presentation of alternative explanations.	
	operators. Boundedness and compactness results in		
	the scale of L ^p and Sobolev spaces		
6.	Potential theory for the Stokes and Brinkman	Lectures, modeling, didactical	
	systems on Lipschitz domains in \mathbf{R}^{n} (II): Fredholm	demonstration, conversation.	
	and invertibility results for related layer potential	Presentation of alternative explanations.	
	operators in L ^p and Sobolev spaces		
7.	Linear elliptic boundary value problems on	Lectures, modeling, didactical	
	Lipschitz domains in \mathbf{R}^{n} . Well-posedness results in	demonstration, conversation.	
	L ^p and Sobolev spaces (I)	Presentation of alternative explanations.	
8.	Linear elliptic boundary value problems on	Lectures, modeling, didactical	
	Lipschitz domains in R ⁿ . Well-posedness results in	demonstration, conversation.	
	L ^p and Sobolev spaces (II)	Presentation of alternative explanations	
9.	Boundary value problems for linear elliptic	Lectures, modeling, didactical	
	systems with nonlinear boundary conditions on	demonstration, conversation.	
	Lipschitz domains in \mathbf{R}^{n} . Existence and uniqueness	Presentation of alternative explanations.	
	based on the results in the linear PDE theory and	-	
	topological degree theory		
10.	Semilinear elliptic boundary value problems on	Lectures, modeling, didactical	
	bounded Lipschitz domains with arbitrary data in	demonstration, conversation.	
	L ^p and Sobolev spaces	Presentation of alternative explanations.	
11.	Boundary value problems for nonlinear elliptic	Lectures, modeling, didactical	
	systems on Lipschitz domains in \mathbf{R}^{n} , with	demonstration, conversation.	
	nonlinear boundary conditions. Existence and	Presentation of alternative explanations.	
	uniquness based on the results in the linear PDE	-	
	theory and fixed point theorems		
12.	Transmission problems for the Navier-Stokes and	Lectures, modeling, didactical	_
	Darcy-Forchheimer-Brinkman systems on	demonstration, conversation.	
	Lipschitz domains in \mathbf{R}^{n} (n=2,3). Applications to	Presentation of alternative explanations.	
	porous media flow problems	_	
TO 'I			

Bibliography

- 1. Kohr, M., Pop, I., *Viscous Incompressible Flow for Low Reynolds Numbers*, WIT Press (Wessex Institute of Technology Press), Southampton (UK) Boston, 2004
- 2. Kohr, M., *Modern Problems in Viscous Fluid Mechanics*, Cluj University Press, Cluj-Napoca, 2 vols. 2000 (in Romanian)
- 3. Hsiao, G.C., Wendland W.L., Boundary Integral Equations, Springer-Verlag, Heidelberg, 2008
- 4. McLean, W., *Strongly Elliptic Systems and Boundary Integral Equations*, Cambridge University Press, Cambridge, UK, 2000
- 5. Wloka, J. T., Rowley, B., Lawruk, B., *Boundary Value Problems for Elliptic Systems*, Cambridge University Press, Cambridge, 1995
- 6. Mitrea, M. Wright, M., *Boundary value problems for the Stokes system in arbitrary Lipschitz domains*, Astérisque, 344 (2012): viii+241 pp.
- 7. Mitrea, I., Mitrea, M., *Multi-Layer Potentials and Boundary Problems for Higher-Order Elliptic Systems in Lipschitz Domains*, Lecture Notes in Mathematics, 2063. Springer, Heidelberg, 2013. x+424 pp.
- 8. Galdi, G.P., *An Introduction to the Mathematical Theory of the Navier–Stokes Equations*. Second Edition. Springer, Berlin, 2011
- 9. Agranovich, M.S., Sobolev Spaces, Their Generalizations, and Elliptic Problems in Smooth and

Lipschitz Domains, Springer, Heidelberg, 2015

- 10. Grisvard, P., Elliptic Problems in Nonsmooth Domains, Pitman Advanced Pub. Program, Boston, 1985.
- 11. Power, H., Wrobel, L.C., *Boundary Integral Methods in Fluid Mechanics*, WIT Press: Computational Mechanics Publications, Southampton (UK) Boston, 1995
- 12. Gilbarg, D., Trudinger, N.S., *Elliptic Partial Differential Equations of Second Order*, Springer, Berlin, 2001

8.2 Seminar	Teaching methods	Remarks
Sobolev spaces. Trace theorems and Green's functions	Applications of course concepts. Description of arguments and proofs for solving problems. Homework assignments. Direct answers to students.	1 hour/week
2. Boundary value problems for the Laplace operator. The variational solution for the Dirichlet and Neumann problems	Applications of course concepts. Description of arguments and proofs for solving problems. Homework assignments. Direct answers to students.	1 hour/week
3. Basic theory of pseudo-differential operators on \mathbf{R}^n	Applications of course concepts. Description of arguments and proofs for solving problems. Homework assignments. Direct answers to students.	1 hour/week
4. The construction of a parametrix for the Brinkman system in R ⁿ . Properties and related results	Applications of course concepts. Description of arguments and proofs for solving problems. Homework assignments. Direct answers to students.	1 hour/week
5. Fredholm operators	Applications of course concepts. Description of arguments and proofs for solving problems. Homework assignments. Direct answers to students.	1 hour/week
6. Fredholm and invertibility properties of layer potential operators for the Stokes and Brinkman systems in L ^p and Sobolev spaces	Applications of course concepts. Description of arguments and proofs for solving problems. Homework assignments. Direct answers to students.	1 hour/week
7. Well-posedness results for linear elliptic boundary value problems on Lipschitz domains in R ⁿ , with data in L ^p and Sobolev spaces (I)	Applications of course concepts. Description of arguments and proofs for solving problems. Homework assignments. Direct answers to students.	1 hour/week
8. Well-posedness results for linear elliptic boundary value problems on Lipschitz domains in R ⁿ , with data in L ^p and Sobolev spaces (II)	Applications of course concepts. Description of arguments and proofs for solving problems. Homework assignments. Direct answers to students.	1 hour/week
9. Existence and uniqueness for boundary value problems for linear elliptic systems with nonlinear boundary conditions on Lipschitz domains in R ⁿ , and data in L ^p and Sobolev spaces	Applications of course concepts. Description of arguments and proofs for solving problems. Homework assignments. Direct answers to students.	1 hour/week
10. Semilinear elliptic boundary value problems on	Applications of course concepts.	1 hour/week

bounded Lipschitz domains with arbitrary data in	Description of arguments and	
L ^p and Sobolev spaces	proofs for solving problems.	
	Homework assignments. Direct	
	answers to students.	
11. Boundary value problems for nonlinear elliptic	Applications of course concepts.	1 hour/week
systems on Lipschitz domains in \mathbf{R}^{n} , with	Description of arguments and	
nonlinear boundary conditions. Existence results in	proofs for solving problems.	
various function spaces	Homework assignments. Direct	
-	answers to students.	
12. Transmission problems for the Navier-Stokes and	Applications of course concepts.	1 hour/week
Darcy-Forchheimer-Brinkman systems in	Description of arguments and	
Lipschitz domains in \mathbf{R}^{n} (n=2,3)	proofs for solving problems.	
	Homework assignments. Direct	
	answers to students.	

Bibliography

- 1. Kohr., M., Pop, I., *Viscous Incompressible Flow for Low Reynolds Numbers*, WIT Press (Wessex Institute of Technology Press), Southampton (UK) Boston, 2004
- 2. Kohr, M., *Modern Problems in Viscous Fluid Mechanics*, Cluj University Press, Cluj-Napoca, 2 vols. 2000 (in Romanian)
- 3. Hsiao, G.C., Wendland W.L., Boundary Integral Equations, Springer-Verlag, Heidelberg, 2008
- 4. Kohr, M., Lanza de Cristoforis, M., Wendland, W.L., *Nonlinear Neumann-transmission problems for Stokes and Brinkman equations on Euclidean Lipschitz domains*, Potential Analysis, **38** (2013), 1123-1171
- 5. Kohr, M., Lanza de Cristoforis, M., Wendland, W.L., *Boundary value problems of Robin type for the Brinkman and Darcy-Forchheimer-Brinkman systems in Lipschitz domains*, Journal of Mathematical Fluid Mechanics, **16** (2014), 595–630
- 6. Kohr, M., Lanza de Cristoforis, M., Mikhailov S.E., Wendland, W.L., *Integral potential method for a transmission problem with Lipschitz interface in R3 for the Stokes and Darcy-Forchheimer-Brinkman PDE systems*, Zeitschrift für Angewandte Mathematik und Physik, **67**:116, no. 5, 1-30, 2016
- 7. McLean, W., *Strongly Elliptic Systems and Boundary Integral Equations*, Cambridge University Press, Cambridge, UK, 2000
- 8. Wloka, J. T., Rowley, B., Lawruk, B., *Boundary Value Problems for Elliptic Systems*, Cambridge University Press, Cambridge, 1995
- 9. Mitrea, M. Wright, M., *Boundary value problems for the Stokes system in arbitrary Lipschitz domains*, Astérisque, 344 (2012): viii+241 pp.
- 10. Grisvard, P., Elliptic Problems in Nonsmooth Domains, Pitman Advanced Pub. Program, Boston, 1985
- 11. Sohr, H., *The Navier-Stokes Equations. An Elementary Functional Analytic Approach*, Birkhäuser, Basel, 2001
- 12. Agranovich, M.S., Sobolev Spaces, Their Generalizations, and Elliptic Problems in Smooth and Lipschitz Domains, Springer, Heidelberg, 2015

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The content of this discipline is in accordance with the curricula of the most important universities in Romania and abroad, where the advanced mathematics plays an essential role. This discipline is useful in preparing future researchers in pure and applied mathematics, as well as those who use mathematical models and advanced methods of study in other areas.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	Knowledge of concepts and basic results	Written exam at the end the semester.	60%
	Ability to justify by proofs theoretical results		
10.5 Seminar/lab activities	Ability to apply concepts and results acquired in the course in the analysis of elliptic boundary value problems	Evaluation of reports and homework during the semester, and active participation in the seminar activity.	15%
10 () ()		A midterm control work.	25%

10.6 Minimum performance standards

Date Signature of course coordinator Signature of seminar coordinator

4.05.2017 Professor PhD Mirela KOHR Professor PhD Mirela KOHR

Date of approval Signature of the head of department

Professor Octavian AGRATINI

> At least grade 5 (from a scale of 1 to 10) at both final written exam and seminar activity during the semester.