1. Information regarding the programme

	regarding the	Pre	·8· ···		0						
1.1 Higher education			Babeş-Bolyai University								
1.2 Faculty			Faculty of Mathematics and Computer Science								
			epart	men	t of Mathema	atics	-				
1.4 Field of study	y	M	ather	matio	cs						
5			aster								
1.6 Study programme /			Master of Advanced Mathematics								
Qualification											
2. Information		-	_								
2.1 Name of the	discipline	Ap	Approximation techniques of the functions								
2.2 Course coord	dinator		Professor Agratini Octavian, PhD								
2.3 Seminar coordinator			Professor Agratini Octavian, PhD								
			DF /				DF /				
2.4. Year of	12.5	2			pe of	C 2.7 Type of Compulsory					
study	Semester		evaluation				dis	sciplin	e		
3. Total estimat	ted time (hour	s/se	mest	er of	f didactic act	ivities)					
3.1 Hours per we	eek			3	Of which: 3	.2 cou	rse	2	3.3		1
									sen	ninar	
3.4 Total hours	in the curricul	um		42	Of which: 3	.5 cou	rse	28	3.6		14
									sen	ninar	
Time allotment:											hours
Learning using manual, course support, bibliography, course notes						40					
Additional documentation (in libraries, on electronic platforms, field documentation)					ntation)	44					
Preparation for seminars/labs, homework, papers, portfolios and essays					50						
Tutorship						10					
Evaluations										14	
Other activities:											
3.7 Total individ	S			158							
3.8 Total hours	per semester				200						

4. Prerequisites (if necessary)

5. Conditions (if necessary)

3.9 Number of ECTS credits

4.1. curriculum	Mathematical Analysis
	Special Topics in Numerical Analysis
4.2. competencies	Comparative assessment and efficient use of various methods of demonstration

8

5.1. for the course	_
5.2. for the seminar /lab	-

6. Specific cor	npetencies acquired
, , , , , , , , , , , , , , , , , , ,	 The ability to understand and manipulate concepts, results and theories advanced in mathematics Ability to use the knowledge gained and complementary in achieving a PhD in Mathematics
n n n T o	Ability to self-improvement and to train continuously
7. Objectives	of the discipline (outcome of the acquired competencies)

7. Objectives of the discipline (outcome of the acquired competencies)				
7.1 General objective of the discipline	Assimilation of modern techniques of approximation of functions / signals			
7.2 Specific objective of the discipline	 Deepening different construction methods of linear positive operators Acquiring knowledge of Fourier analysis and wavelets analysis Knowledge of the outstanding classes of approximation operators of discreteand continuous type 			

8. Content

8. Approximation in periodical spaces	Interactive exposure: explanation, conversation
9. Windowed Fourier transforms. Gabor formulas	Interactive exposure: explanation, conversation
10. Wavelets. Franklin and Stromberg direction	Interactive exposure: explanation, conversation
11. Multi resolution analysis	Interactive exposure: explanation, conversation

8.1 Course	Teaching methods	Remarks
1. Positive linear operators: definitions, properties.	Interactive exposure:	
Bohman-Korovkin theorems	explanation, conversation	
2. Moduli of smoothness. Properties	Interactive exposure: explanation, conversation	
3. Quantitative estimates. The error of approximation	Interactive exposure: explanation, conversation	
4. K – functionals. Properties	Interactive exposure: explanation, conversation	
 Integral generalizations of discrete type approximation processes. Kantorovich and Durrmeyer operators 	Interactive exposure: explanation, conversation	
6. Summation methods: Cesaro, Euler, Jakimovski	Interactive exposure: explanation, conversation	
7. Random approximation schemes. Feller type	Interactive exposure:	
operators	explanation, conversation	

12. On mother wavelet and father wavelet	Interactive exposure: explanation, conversation
13. Wavelets decompositions and reconstructions	Interactive exposure: explanation, conversation
14. Integral wavelets transform	Interactive exposure: Explanation, conversation

Bibliography

- [1] Agratini, O., Blaga, P., Coman, Gh., *Lectures on Wavelets, Numerical Methods and Statistics*, Casa Cărții de Știință, Cluj-Napoca, 2005.
- [2] Francesco Altomare, Michele Campiti, *Korovkin type Approximation Theory and its Applications*, de Gruyter Studies in Mathematics, Vol. 17, Walter de Gruyter, Berlin New York, 1994.

[3] Lokenath Debnath, Wavelet Transforms & Their Applications, Birkhauser, Boston, 2002.

8.2 Seminar	Teaching methods	Remarks
1. Spaces of functions and their characteristic	Exercise, dialogue,	
properties. Inequalities in normed spaces	individual study	
2. Best approximation to a given function	Exercise, dialogue, individual study	
3. Bernstein polynomials. Properties	Exercise, dialogue, individual study	
4. Discrete type linear positive operators: Szasz,	Exercise, dialogue,	
Baskakov	individual study	
5. Convolution product. Properties	Exercise, dialogue, individual study	
6. Convolution operators. Approximation properties	Exercise, dialogue, individual study	
7. Reserved for a written paper (quiz)	Exercise, dialogue, individual study	
8. Stancu operators associated with the Markov-Polya	Exercise, dialogue,	
urn scheme	individual study	
9. Fourier transforms. Problems on the theme of the	Exercise, dialogue,	
same week lecture	individual study	
10. Window functions - calculating the center and	Exercise, dialogue,	
radius	individual study	
11. Example of orthogonal wavelet – Haar function	Exercise, dialogue, individual study	

12. B – spline functions. Properties	Exercise, dialogue,
	individual study
13. Examples of mother - wavelets	Exercise, dialogue,
	individual study
14. Linear operators generated by a scaling function	Exercise, dialogue,
	individual study

Bibliography

[4] Agratini, O., Aproximare prin operatori liniari, Presa Universitară Clujeană, Cluj-Napoca, 2000.

[5] Agratini, O., Chiorean, I., Coman, Gh., Trîmbițaș, R., Analiză numerică și teoria aproximării, Vol. III, Presa Universitară Clujeană, Cluj-Napoca, 2002.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

This program covers the necessary basic knowledge in this area Software companies consider important in that it provides a solid theoretical foundation in skills development programmer. **10. Evaluation** Type of activity 10.1 Evaluation 10.2 Evaluation methods 10.3 Share in the criteria grade (%) 10.4 Course Colloquy 40% Two quiz 10.5 Seminar 25% + 25%10% Continous observations 10.6 Minimum performance standards ≻ At least grade 5 (from a scale of 1 to 10) at written exam Signature of seminar coordinator Date Signature of course coordinator

March 10th, 2017

Octavian Agratini

Octavian Agratini

Date of approval

Signature of the head of department

March 25th, 2017

Octavian Agratini