syllabus

1. Information regarding the programme

1.1 Higher education institution	Babeş Bolyai University
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme /	Computer Science
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline Virtual Instrumentation							
2.2 Course coordinator Prof.Dipl.Eng.PhD. Horia Hedeşiu							
2.3 Seminar c	2.3 Seminar coordinator						
2.4. Year of	3	2.5	6	2.6. Type of	C	2.7 Type of	Optional
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3 seminar/ laboratory	1
3.4 Total hours in the curriculum	36	Of which: 3.5 course	24	3.6 seminar/ laboratory	12
Time allotment:					Hours
Learning using manual, course support, bibliography, course notes					20
Additional documentation (in libraries, on electronic platforms, field documentation)					30
Preparation for seminars/labs, homework, papers, portfolios and essays					30
Tutorship					22
Evaluations					10
Other activities:				-	
3.7 Total individual study hours 112					
3.8 Total hours per semester		150			
3.9 Number of ECTS credits		6			

4. Prerequisites (if necessary)

4.1. curriculum	•
4.2. competencies	•

5. Conditions (if necessary)

5.1. for the course	Course hall with projector; internet connection
5.2. for the seminar /lab activities	 computers embedded systems myRIO accessories for myRIO systems: sensors, displays, connectors, passive and active electronic components

6. Specific competencies acquired

Profess	C 2.1 Identify adequate software systems development methodologies
ional	C 1.1 Proper description of programming
compet	paradigms and language specific
encies	mechanisms, and identification of
	semantical an syntactical differences
	C4.3. Identify models and methods
	adequate to real life problem solving

Transv	CT1 Apply rules to: organized and efficient work, responsabilities of didactical and
ersal	scientifical activities and creative capitalization of own potential, while respecting principles
compet	and rules for professional ethics
encies	CT3 Use efficient methods and techniques for learning, knowledge gaining, and research and
	develop capabilities for capitalization of knowledge, accomodation to society requirements
	and communication in English

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	- Develop practical abilities to implement embedded systems, produce functional prototypes which may be used in applied research
7.2 Specific objective of the discipline	- Learning and understanding of the concepts and notions related to the graphical programming language G, respectively programming framework LabVIEW

8. Content

8.1 Course	Teaching methods	Remarks
1. Introduction to Virtual Instrumentation. System graphical design. Industrial Internet of Things	exposure: description, explanation, example, case studies, dialogue, debate	
2. Fundamentals of graphical programming in G 1/3: virtual instruments, VI – Front Panel, Block Diagram, Tool Palette, structures, clusters, debugging, error management	exposure: description, explanation, examples, discussion of case studies	

 Fundamentals of graphical programming in G 2/3: 	exposure: description, explanation, example
implement VI, document graphical code, timing issues, developing modular apps	
4. Fundamentals of graphical programming in G 3/3:	exposure: description, explanation, example; dialogue, case studies
sequential programming, state machines, parallelism, multiple loops architectures, global variables, event driven programming	
5. Programming Real Time Systems: introduction, components, devices configuration	exposure: description, explanation, example, dialogue, debate
6. Architecture of Real Time Systems: Host/Target, multithreading, execution control, timing control, interprocess communication	exposure: description, explanation, example, discussion of case studies
7. Optimization of Real Time Applications: requirements analysis, Target constraints, communication in distributed systems, memory management and system monitoring, realibility, debugging, testing, deploying	exposure: description, explanation, example, dialogue, debate, case studies
8. PFGA Systems: components, compilation, timing issues, Single-Cycle Loop execution	exposure: description, explanation, example, case studies, dialogue, debate
 9. Image processing using VI: Introduction to Machine Vision, image acquisition and display, calibration, measurements. Image identification, bar codes, optical recognition of graphical characters 	exposure: description, explanation, example, case studies, dialogue, debate
10. Human Machine Interface, data output on mobile devices: graphical interfaces, G web server, LabView WebServices, SCADA elements with applications, Data Dashboard	exposure: description, explanation, example, case studies, dialogue, debate
 Rapid Prototyping. MyRIO emebedded systems in education: MyRIO 	

12. Real Time Systems Modelling: Model-in-the	ļ-
loop, SW-in-the-loop, HW-in-the-loop	

Bibliography

ă1] Horia Hedesiu, Radu Munteanu jr. –Introducere in Programare Grafica Instrumentala, ISBN 973-9357-48-2, Editura Mediamira, Cluj-Napoca, 2003

[2] Gabriel Chindris, Horia Hedesiu - Proiectarea Grafica a Sistemelor de Control Pentru

Aplicatii Industriale, ISBN 978-973-713-242-0, Editura Mediamira Cluj-Napoca, 2009

[3] National Instruments Corp – LabVIEW Core 1 Course Manual, 2013 Edition

[4] National Instruments Corp – LabVIEW Core 2 Course Manual, 2013 Edition

[5] National Instruments Corp – LabVIEW Core 3 Course Manual, 2013 Edition

[6] Kye-Si Kwon, Steven Ready - Practical Guide to Machine Vision Software: An Introduction with LabVIEW, Wiley VCH (14 Jan. 2015)

[7] Blume, Peter A. - The LabVIEW Style book, ISBN 0-13-145835-3, Pearson Education, 2007

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Graphical programming in G 1/2	Explation, dialogue, case studies	
2. Graphical programming in G 2/2	Explation, dialogue, case studies	
3. Real Time Application development	Explation, dialogue, case studies	
4. Real Time Systems Architecture	Evaluation	
5. Image processing using VI	Explation, dialogue, case studies	
6. Rapid Prototyping	Explation, dialogue, case studies	
7. Final project turn-in	Evaluation	

Bibliography

ă1] Horia Hedesiu, Radu Munteanu jr. –Introducere in Programare Grafica Instrumentala, ISBN 973-9357-48-2, Editura Mediamira, Cluj-Napoca, 2003

[2] Gabriel Chindris, Horia Hedesiu - Proiectarea Grafica a Sistemelor de Control Pentru

Aplicatii Industriale, ISBN 978-973-713-242-0, Editura Mediamira Cluj-Napoca, 2009

[3] National Instruments Corp – LabVIEW Core 1 Course Manual, 2013 Edition

[4] National Instruments Corp – LabVIEW Core 2 Course Manual, 2013 Edition

[5] National Instruments Corp – LabVIEW Core 3 Course Manual, 2013 Edition

[6] Kye-Si Kwon, Steven Ready - Practical Guide to Machine Vision Software: An Introduction with LabVIEW, Wiley VCH (14 Jan. 2015)

[7] Blume, Peter A. - The LabVIEW Style book, ISBN 0-13-145835-3, Pearson Education, 2007

9. Corroborating the content of the discipline with the expectations of the epistemic community,

professional associations and representative employers within the field of the program

- The course respects the IEEE and ACM Curriculla Recommendations for Computer Science studies;
- The course exists in the studying program of all major universities in Romania and abroad;
- The content of the course is considered the software companies as important for advanced programming skills

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	Final project: architecture & design pattern application	Project grading	40%
10.5 Seminar/lab activities	Lab Assignments	-Mini-projects grading	60%
10.6 Minimum performance standards			
- A minimum passing grade is defined by attaining at least 50% (5/10) points for the final project and each of the three lab assignments respectively.			

 Date
 Signature of course coordinator
 Signature of seminar coordinator

 Prof.Dipl.Eng.PhD. Horia Hedeşiu

Date of approval

.....

Signature of the head of department

.....