SYLLABUS

1. Information regarding the	of ogramme
1.1 Higher education	Babes-Bolyai University
institution	
1.2 Faculty	Mathematics and Informatics
1.3 Department	Informatics
1.4 Field of study	Informatics
1.5 Study cycle	Licence
1.6 Study programme /	Informatics - english
Qualification	

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the disci	plin	e (en)	Vi	rtual reality				
(ro)			Re	Realitate virtuală				
2.2 Course coordinate	or		As	soc. prof. Rareş Boian	1			
2.3 Seminar coordinator			As	Assoc. prof. Rareş Boian				
2.4. Year of study 3		2.5 Semester	5	2.6. Type of	С	2.7 Type of	Optional	
				evaluation		discipline		
2.8 Code of the		MLE5061						
discipline								

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 cou	rse	2	3.3	2
_					seminar/laboratory	
3.4 Total hours in the curriculum	56	Of which: 3.5 cou	rse	28	3.6	28
					seminar/laboratory	
Time allotment:						hours
Learning using manual, course suppor	t, bił	liography, course n	otes	5		10
Additional documentation (in libraries	, on	electronic platforms	s, fie	eld do	cumentation)	5
Preparation for seminars/labs, homewo	ork, j	papers, portfolios ar	nd e	ssays		19
Tutorship 5					5	
Evaluations						5
Other activities:						
3.7 Total individual study hours		44				
3.8 Total hours per semester		100				
3.9 Number of ECTS credits		4				

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competencies	•

5. Conditions (if necessary)

· · · · · · · · · · · · · · · · · · ·			
5.1. for the course	•	The requirements posted here http://www.cs.ubbcluj.ro/~rares/course/vr/	•
5.2. for the seminar /lab	•	Lab rooms with Windows and UNIS operating system access	•
activities	•	The requirements posted here http://www.cs.ubbcluj.ro/~rares/course/vr/	

6. Specific competencies acquired

	• Define notions, concepts, theories and models of virtual reality systems.
Professional competencies	\cdot Critical analysis and use of the principles, methods and techniques work for quantitative and qualitative evaluation of the processes within an virtual reality systems
	\cdot Apply basic concepts and theories in the field of virtual reality, programming methods and professional project development
Transversal	• Execution of the tasks required under specified requirements and the deadlines imposed,
competencies	with the rules of professional ethics and moral conduct
	\cdot Information and permanent documentation in its field
	\cdot Seeking to improve business results by engaging in professional activities

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the		Introducing the students to virtual reality environment programming.	
discipline	The students should learn the following concepts: general structure of		
1		a virtual reality application, human interaction with the virtual	
		environment through the use of input devices, modeling (visual,	
		physical, tactile, and force), and character animation. In the end the	
		students should be able to create a multi-sensory, interactive virtual	
		reality application.	
7.2 Specific objective of the	•	Reprezentarea modelelor virtuale	
discipline	•	Structura generala a unei aplicatii de realitate virtuala	
	-	Reprezentarea pozitionarii si orientarii unui obiect in spatiu.	
	•	Matrici de transformare	
	-	Interactiunea cu sezori si aparatura externa	
	-	Tehnici de optimizare ale mediilor virtuale	
	•	Simulare realista bazaata pe legile fizicii	

8. Content

of content		
8.1 Course	Teaching methods	Remarks
Weeks 1 - 3	Exposition:	
1. Introduction to virtual environments,	presentation,	
input/output	explanations,	
devices, state of the art	practical examples,	
2. Scene definition	demonstrations,	
3. Ray tracing	case-study	
	discussions	
Weeks 4 - 6	Exposition:	
4. Virtual object modeling (geometric primitives,	presentation,	
custom build geometries)	explanations,	
5. Virtual reality application architecture	practical examples,	
6. Position and orientation representation	demonstrations,	
(position	case-study	
vector, Euler angles, orientation matrix,	discussions	
7. JMonkey3D introduction		
8. Scene graph (reference frames, node hierarchy,		
node types, light nodes, fog)		

Weeks 7 - 9	Exposition:	
9. JMonkey3D examples	presentation,	
10. JMonkey3D examples	explanations,	
11. Scene optimizations (level of details, textures,	practical examples,	
cell-segmentation)	demonstrations,	
	case-study	
	discussions	
Weeks 9 - 12	Exposition:	
12. Collision detection	presentation,	
13. Simulating spatial phenomena (fog, smoke,	explanations,	
fire,	practical examples,	
fluids)	demonstrations,	
14. Physics engines	case-study	
15. Character animation	discussions	

Bibliography

1. CRAIG J.J., Introduction to Robotics: Mechanics and Control (3rd edition), Prentice Hall, 2003

2. BURDEA G.C., COIFFET P., Virtual Reality Technology, Second Edition with CD-ROM, Wiley-IEEE Press, 2003

3. FOLEY J.D., VAN DAM A., FEINER S.K., HUGHES J.F, Computer Graphics: Principles and Practice in C (2nd Edition), Addison-Wesley Professional, 1995

4. OpenGL Architecture Review Board, SHREINER D, WOO M., NEIDER J., OpenGL(R) Programming Guide: The Official Guide to Learning OpenGL(R), Version 2 (5th Edition), Addison-Wesley Professional, 2005

5. ERICSON C. Real-Time Collision Detection, Morgan Kaufmann, 2004

6. *** JMonkey3D Documentation, http://jmonkeyengine.com

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Ray Tracing and geometrical concepts	Explanation,	
	examples, dialog,	
	case-studies	
2. Ray Tracing	Explanation,	
	examples, dialog,	
	case-studies	
3. Articulated models	Explanation,	
	examples, dialog,	
	case-studies	
4. Articulated models	Explanation,	
	examples, dialog,	
	case-studies	
5. Semester project	Explanation,	
	examples, dialog,	
	case-studies	
6. Semester project	Explanation,	
	examples, dialog,	
	case-studies	

Bibliography

1. CRAIG J.J., Introduction to Robotics: Mechanics and Control (3rd edition), Prentice Hall, 2003

2. BURDEA G.C., COIFFET P., Virtual Reality Technology, Second Edition with CD-ROM, Wiley-IEEE Press, 2003

3. FOLEY J.D., VAN DAM A., FEINER S.K., HUGHES J.F, Computer Graphics: Principles and Practice in C (2nd Edition), Addison-Wesley Professional, 1995

4. OpenGL Architecture Review Board, SHREINER D, WOO M., NEIDER J., OpenGL(R) Programming Guide: The Official Guide to Learning OpenGL(R), Version 2 (5th Edition), Addison-Wesley

Professional, 2005

- 5. ERICSON C. Real-Time Collision Detection, Morgan Kaufmann, 2004
- 6. *** JMonkey3D Documentation, http://jmonkeyengine.com

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- By learning the theoretical and methodological concepts and addressing the practical aspects of the Virtual Reality course, students acquire a body of knowledge consistent, consistent with partial competencies required for possible occupations provided in Grid 1 - RNCIS
- The course complies with IEEE and ACM Curriculla Recommendations for Computer Science studies.
- The course curriculum exists in universities and faculties in Romania
- The course content is very well appreciated by software companies whose employees and graduates of this course

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)	
10.4 Course	The level of knowledge and understanding of the course subjects	Project evaluation	40%	
10.5 Seminar/lab activities	Ability to solve practical problems, specific to the course subjects, on the computer in a given amount of time Lab activity	Semester project evaluation	60%	
10.6 Minimum performance standards				
Ø Minimum 5 in the final grade				

Date	Signature of course coordinator	Signature of seminar coordinator
10.05.2016	Assoc.prof. Rareş Boian	Assoc.prof. Rareş Boian

Date of approval

Signature of the head of department

.....

Prof.dr. Anca Andreica