SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme /	Computer Science
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline Numerical Calculus							
2.2 Course coordinator Assoc. Prof. Teodora Catinas							
2.3 Seminar coordinator				Assoc. Prof. Teodora Catinas			
2.4. Year of	3	2.5	6	2.6. Type of	E	2.7 Type of	Compulsory
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	2 lab
				seminar/laboratory	
3.4 Total hours in the curriculum	48	Of which: 3.5 course	24	3.6	24
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					20
Additional documentation (in libraries, on electronic platforms, field documentation)					10
Preparation for seminars/labs, homework, papers, portfolios and essays					20
Tutorship				7	
Evaluations				20	
Other activities:				-	

3.7 Total individual study hours	77
3.8 Total hours per semester	125
3.9 Number of ECTS credits	5

4. Prerequisites (if necessary)

4.1. curriculum	•
4.2. competencies	Knowledge of main notions and procedures of numerical analysis and
	the ability to work with them. Programming skills in MATLAB
	for implementing numerical algorithms.

5. Conditions (if necessary)

5.1. for the course	•
5.2. for the seminar /lab activities	Laboratory with computers.

6. Specific competencies acquired

Professional competencies	 C1.1 Description of specific programming paradigms and language mechanisms, as well as the identification of the differences between the semantic and syntactic aspects. C3.3 Utilization of informatical and mathematical models and instruments for solving specific problems from the aplicability domain.
Transversal competencies	CT3. Utilization of some efficient methods and techniques of learning, information, research and development of capacities of exploitation of knowledge, of adaptation to the requirements of a dynamical society and communication in Romanian and English.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Be able to understand and use basic concepts of Numerical Analysis Be able to implement numerical algorithms in order to solve practical problems.
7.2 Specific objective of the discipline	 Acquire theoretical and practical knowledge about the basic numerical algorithms regarding approximation of functions, numerical integration of functions, numerical solving of linear/nonlinear systems of equations and differential equations. Ability to apply numerical algorithms to solve practical and real life problems.

8. Content

8.1 Course		Teaching methods	Remarks
	ctive notions. Finite and divided ces (definitions and properties).	Exposure: description, explanation, examples.	
Taylor's	s formula.		
2. Lagrang	e interpolation: interpolation	Exposure: description,	
polynon	nial, interpolation formula, study of	explanation, examples,	
the error	r.	proofs.	
3. Lagrang	ge interpolation: Aitken's algorithm	Exposure: description,	
and Nev	vton's formula.	explanation, examples.	
4. Hermite	interpolation: interpolation	Exposure: description,	
polynon	nial, interpolation formula, study of	explanation, examples,	
the error	r. Hermite interpolation with double	proofs.	
nodes.			
5. Birkhof	f interpolation: interpolation	Exposure: description,	
polynon	nial, interpolation formula, study of	explanation, examples,	
the error	r. Least squares approximation.	proofs.	
6. Numerio	cal differentiation and integration	Exposure: description,	
(introdu	ctive notions). Newton-Cotes	explanation, examples,	
quadrati	re formulas. Repeated quadrature	proofs, dialogue.	
formula	S.		
7. Romber	g's algorithm. Adaptive quadratures	Exposure: description,	
formula	s. General quadrature formulas.	explanation, examples.	
Gauss-ty	ype quadrature formulas.		

8. Numerical methods for solving linear systems	Exposure: description,
- direct methods (Gauss, Gauss-Jordan, LU-	explanation, examples.
methods). Conditioning of a linear system.	
9. Numerical methods for solving linear systems	Exposure: description,
- iterative methods (Jacobi, Gauss-Seidel,	explanation, examples.
SOR).	
10. Methods for solving nonlinear equations in R:	Exposure: description,
one-step methods (Newton (tangent) method)	explanation, examples.
and multi-step methods (secant, bisection and	
false position methods).	
11. Methods for solving nonlinear equations in R:	Exposure: description,
Lagrange, Hermite and Birkhoff inverse	explanation, examples,
interpolation. Methods for solving nonlinear	proofs.
systems: successive approximation and	
Newton methods.	
12. Numerical methods for solving differential	Exposure: description,
equations: Taylor interpolation, Euler and	explanation, examples.
Runge-Kutta methods.	

Bibliography

- **1.** O. Agratini, I. Chiorean, Gh. Coman, R.T. Trîmbitaş, *Analiză Numerică și Teoria Aproximării*, vol. III, Ed. Presa Univ. Clujeană, 2002;
- 2. R. L. Burden, J. D. Faires, Numerical Analysis, PWS Publishing Company, 1985.
- 3. I. Chiorean, T. Cătinaș, R. Trîmbitaș, Analiză numerică, Ed. Presa Univ. Clujeană, 2010.
- **4.** Gh. Coman, T. Cătinaș, și alții, *Interpolation operators*, Ed. Casa Cărții de Știință, Cluj-Napoca, 2004.
- **5.** Gh. Coman, I. Chiorean, T. Cătinaș, *Numerical Analysis. An Advanced Course*, Ed. Presa Univ. Clujeană, 2007.
- **6.** W. Gander, M.J. Gander, F. Kwok, *Scientific Computing*, Springer Internat. Publishing, 2014.
- 7. R. Plato, Concise Numerical Mathematics, Amer. Math. Soc., 2003.
- **8.** D.D. Stancu, Gh. Coman, O. Agratini, R. Trimbitas, *Analiză Numerică și Teoria Aproximării*, vol. I, Ed. Presa Univ. Clujeană, 2001;
- **9.** D.D. Stancu, Gh. Coman, P. Blaga, *Analiză Numerică și Teoria Aproximării*, vol. II, Ed. Presa Univ. Clujeană, 2002;

10. R. Trîmbitas, *Numerical Analysis*, Ed. Presa Univ. Clujeană, 2007.

8.2 Laboratory	Teaching methods	Remarks
Introductory examples and problems in	Explanation, dialogue.	
Matlab.		
2. Problems with orthogonal polynomials and	Explanation, dialogue,	
Taylor polynomials. Computation of finite	examples.	
and divided differences.		
3. Lagrange interpolation. Computation of	Explanation, dialogue,	
Lagrange polynomial using barycentric	practical examples.	
formula.		
4. Applied problems to Lagrange interpolation	Explanation, dialogue,	
using Aitken's algorithm and Newton's	practical examples.	
method.	Evaluation.	
5. Applied problems to Hermite interpolation.	Explanation, dialogue,	
	practical examples.	
	Evaluation.	
6. Applied problems to least squares	Explanation, dialogue,	
approximation method.	practical examples.	
	Evaluation.	
7. Problems with simple and repeated	Explanation, dialogue,	
integration formulas and with Romberg's	practical examples.	

algorithm.	
8. Applied problems to Gauss type quadrature	Explanation, dialogue,
formulas and adaptive quadratures.	examples. Evaluation.
9. Solving linear systems using direct methods.	Explanation, dialogue,
Study of perturbations of a linear system.	examples.
10. Solving linear systems using iterative	Explanation, dialogue,
methods.	examples. Evaluation.
11. Solving nonlinear equations using Newton,	Explanation, dialogue,
secant and bisection methods.	practical examples.
Solving nonlinear systems using Newton's	Evaluation.
method.	
12. Solving some differential equations using	Explanation, dialogue,
Euler and Runge-Kutta methods. Ending of	practical examples.
evaluation for laboratories	Evaluation.

Bibliography

- 1 R. L. Burden, J. D. Faires, *Numerical Analysis*, PWS Publishing Company, 1985.
- 2 A. Kharab, R. B. Guenther, *An introduction to numerical methods. A Matlab approach*, Taylor&Francis Group, 2006.
- 3 R. Trîmbitaş, Numerical Analysis, Ed. Presa Univ. Clujeană, 2007.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course exists in the studying program of all major universities in Romania and abroad;
- The content of the course is important for seeing the application of mathematical knowledge in solving practical and real life problems.

10. Evaluation

10. Dialuation						
Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the			
			grade (%)			
10.4 Course	 know the basic principles of Numerical Analysis; apply the course concepts problem solving 	Written exam	70%			
10.5 Seminar/lab	- be able to implement	Evaluation and continuous	30%			
activities	course concepts and	observations during the	5070			
	algorithms	semester.				
	- apply techniques for					
	different practical					
	problems					
10.6 Minimum performance standards						
At least grade 5 (from a scale of 1 to 10) at both written exam and laboratory work.						

Data Cianatura of accuracy accordinates Cianatura of accuracy according						
Date Signature of course coordinator Signature of seminar coordinator	Date	Signature of course	coordinator	Signature of	of seminar	coordinato

20.04.2017

Date of approval Signature of the head of department