syllabus

1. Information regarding the programme

1.1 Higher education	Babeş Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme /	Computer Science
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline (en)		Artificial Intelligence					
(ro)							
2.2 Course coordina	2.2 Course coordinator			Assistant Professor PhD Mihoc Tudor Dan			
2.3 Seminar coordinator			As	Assistant Professor PhD Mihoc Tudor Dan			
2.4. Year of study 2	2	2.5 Semester	4 2.6. Type of evaluation E 2.7 Type of discipline DS			DS	
2.8 Code of the discipline		MI	LE5029				

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	1 sem +
				seminar/laboratory	1 lab
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					
Additional documentation (in libraries, on electronic platforms, field documentation)					14
Preparation for seminars/labs, homework, papers, portfolios and essays					28
Tutorship					7
Evaluations					20
Other activities:					-
·					

3.7 Total individual study hours	94
3.8 Total hours per semester	150
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1. curriculum	Graph Theory, Data Structures and Algorithms
4.2. competencies	Average programming skills in a high level programming
	language

5. Conditions (if necessary)

5.1. for the course	
5.2. for the seminar /lab	· Laboratory with computers; high level programming language
activities	environment

6. Specific competencies acquired

Prof	An introduction to the field of AI.
essio	 Acquire the basic notion, techniques and algorithms of AI.
nal	The background for advanced AI courses.
com	
pete	
ncies	
T	- 41 124 4 1 4 1 4 1 200 4 1120 11
Tran	Ability to apply AI techniques to different real life problems
svers	Ability to model problems in an interdisciplinary field
al	
com	
pete	
ncies	

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the	Ability to understand and use the basic AI algorithms and principles.
discipline	Ability to model real life problems as AI problems and find optimal
	solutions to them
7.2 Specific objective of the	Acquire the knowledge about the main classes of soft computing
discipline	algorithms, the basic notions of game theory and knowledge base
	reasoning.

8. Content

8.1 Course	Teaching methods	Remarks
1. Introduction to AI	Exposure: description,	
	explanation, examples,	
	discussion of case studies	
2. Problem solving as search (Problem spaces,	Exposure: description,	
Uninformed search, Breadth first search, Depth	explanation, examples,	
first search, Limited depth first search,	discussion of case studies	
Iterative-deepening search, Uniform cost search)		
3. Problem solving as search (Informed search,	Exposure: description,	
Heuristic search, Best-first search, Greedy, A*	explanation, debate,	
algorithm, A* variants)	dialogue	
4. Local search (Simulated annealing, Hill	Exposure: description,	
climbing)	explanation, examples,	
	discussion of case studies	
5. Evolutionary computation (Evolutionary	Exposure: description,	
algorithms)	explanation, examples,	
	discussion of case studies	

6. Swarm intelligence (Particle swarm optimization, Ant Colonies optimization)	Exposure: description, explanation, examples, live demo
7. Game playing (Minimax search, Alpha-beta pruning)	Exposure: description, explanation, examples, proofs
8. Knowledge representation and reasoning (Knowledge based systems)	Exposure: description, explanation, examples, proofs, dialogues, debates
9. Rule based systems (Uncertainty management in rule based systems)	Exposure: description, explanation, examples, discussion of case studies
10. Machine learning. Decision Trees	Exposure: description, explanation, examples, discussion of case studies
11. Neural networks (Single layer neural networks, Perceptron model)	Exposure: description, explanation, examples, discussion of case studies
12. Neural networks (Multi-layer neural networks, Backpropagation learning)	Exposure: description, explanation, examples, discussion of case studies
13. Evolutionary Computation (Evolutionary strategies, Evolutionary programming, Genetic programming)	Exposure: description, explanation, examples, discussion of case studies
14. Intelligent Systems (Support Vector Machines, K-mean)	Exposure: description, explanation, examples, discussion of case studies

Bibliography

- 1. GROSAN, C., Abraham, A., Intelligent Systems: a modern approach, Springer Verlag GERMANY, 2011
- 2. PATRIDGE, D., Artificial Intelligence. Applications in the future of software engineering, Ellis Harwood Series in A.I., John Wiley & Sons, New York 1986.
- 3. RICH, E. Artificial Intelligence, Mc.Graw Hill, 1989.
- 4. WINSTON, P., Inteligenta artificiala, Ed.Tehnica, 1980. GOLDBERG, D. E., Genetic Algorithm. Addison-Wesley, Reading, 1989

8.2 Seminar	Teaching methods	Remarks
Uninformed Search	Explanation, dialogue, case	The seminar is
	studies, problem solving	structured as 2
		hours classes
		every second week
2. Informed Search	Explanation, dialogue, case	
	studies, problem solving	
3. Evolutionary Algorithms	Dialogue, problem solving	
4. Swarm Intelligence	Dialogue, explanation,	
	problem solving	
5. Games	Dialogue, debate,	
	explanation	
6. Ruled based systems	Explanation, dialogue,	
	problem solving	
7. Neural Networks	Explanation, dialogue,	
	debate	
Bibliography:		

1. GROSAN, C., Abraham, A., Intelligent Systems: a mod	dern approach, Springer Verl	ag GERMANY, 2011
2. RUSSELL, S., J., NORVIG, P., Artificial intelligence:		
Education, 2003	7.7	
8.3 Laboratory	Teaching methods	Remarks
1. Task: Implement an uninformed search algorithm,	case studies, dialogues	The laboratory is
given from a list of projects		structured as 2
		hours classes
		every second week
2. Task: Implement an informed search algorithm, given	case studies, dialogues	
from a list of projects		
3. Task:Implement an Evolutionary Algorithm, given	case studies, dialogues	
from a list of projects		
4. Task:Implement a PSO and an ACO algorithm, given	case studies, dialogues	
from a list of projects	· -	
5. Task: solve (implement and test) a game, given from	case studies, dialogues	
a list of projects	-	
6. Task: implement a rule based system, and apply it on	case studies, dialogues	
a specific problem		
7. Task: implement a Neural Network, and apply it on a	case studies, dialogues	
specific problem		

Bibliography:

- 1. GROSAN, C., Abraham, A., Intelligent Systems: a modern approach, Springer Verlag GERMANY, 2011
- 2. RUSSELL, S., J., NORVIG, P., Artificial intelligence: A modern approach, N.J. Prentice Hall/Pearson Education, 2003

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course follows the scheme and structure used by the most important universities in USA and Europe;
- The course exists in the studying program of all major universities in Romania and abroad;

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	know the basic principle of the AI domain;apply the course conceptsproblem solving	Written exam (there will be two written exams)	60%
10.5 Seminar/lab activities	- be able to implement the algorithm described in the course and discussed during the seminars	-Lab assignments	40%
10.6 Minimum performance	a standarda		

> At least grade 5 (from a scale of 1 to 10) at both written exams and laboratory work

Date	Signature of course coordinator	Signature of seminar coordinator	
	Tudor - Dan Mihoc	Tudor - Dan Mihoc	
Date of approval	Signature	Signature of the head of department	