SYLLABUS

1. Information regarding the programme			
1.1 Higher education	Babeş-Bolyai University, Cluj-Napoca		
institution			
1.2 Faculty	Faculty of Mathematics and Computer Science		
1.3 Department	Department of Computer Science		
1.4 Field of study	Computer Science		
1.5 Study cycle	Bachelor		
1.6 Study programme /	Computer Science		
Qualification			

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the	discipl	ine (en)	Da	ta Structures and	d Algori	thms	
(ro)							
2.2 Course coordinator		Lect. PhD. Marian Zsuzsanna					
2.3 Seminar coordinator			Le	Lect. PhD. Marian Zsuzsanna			
2.4. Year of	1	2.5	2	2.6. Type of	Ε	2.7 Type of	Compulsory
study		Semester		evaluation		discipline	
2.8 Code of the		MLE5022					
discipline							

3. Total estimated time (hours/semester of didactic activities)

er rotar estimatea time (notais, semes		,			
3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1 sem
				seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6	14
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course suppor	t, bił	oliography, course notes	5		16
Additional documentation (in libraries, on electronic platforms, field documentation)					8
Preparation for seminars/labs, homework, papers, portfolios and essays					14
Tutorship					6
Evaluations				14	
Other activities:					
3.7 Total individual study hours 58					
3.8 Total hours per semester		100			
3.9 Number of ECTS credits		4			

4. Prerequisites (if necessary)

4.1. curriculum	Fundamentals of programming
4.2. competencies	•

5. Conditions (if necessary)

5.1. for the course	Class room with projector
5.2. for the seminar /lab	•
activities	

6. Specific competencies acquired

	C4.1. Definition of concepts and basic principles of computer science, and their mathematical
na	models and theories.
Professional competencies	C4.3. Identification of adequate models and methods for solving real problems
Pre	C4.5. Adoption of formal models in specific applications from different domains
	CT1. Apply rules to: organized and efficient work, responsibilities of didactical and scientifical
al cies	activities and creative capitalization of own potential, while respecting principles and rules for professional ethics
Transversal competencies	CT3. Use efficient methods and techniques for learning, knowledge gaining, and research and develop capabilities for capitalization of knowledge, accommodation to society requirements and communication in English.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• Study of data structures that can be used to implement abstract data types (arrays, linked lists, heaps, hash tables, binary trees).
7.2 Specific objective of the discipline	 Study of the concept of abstract data type and the most frequently used abstract data types in application development. Study of the data structures that can be used to implement these abstract data types. Develop the ability to work with data stored in different data structures and to compare the complexities of their operations. Develop the ability to choose the appropriate data structure in order to model and solve real world problems. Acquire knowledge necessary to work with existing data structure libraries.

8. Content		
8.1 Course	Teaching methods	Remarks
1. Introduction. Data structures. Abstract	- Exposure	
Data Types	- Description	
• Data abstractization and encapsulation	- Examples	
Pseudocode conventions	- Didactical	
Complexities	demonstration	
2. Arrays. Iterators	- Exposure	
Dynamic array	- Description	
Amortized analysis	- Conversation	
	- Didactical	

• Interface of an iterator	demonstration
3. Linked Lists	- Exposure
 Singly linked list: representation and 	- Description
operations	- Conversation
 Doubly linked list: representation and 	- Didactical
operations	demonstration
 Iterator for linked lists 	- Case study
4. Linked Lists II	- Exposure
	- Description
 Sorted linked lists: representation and operations 	- Conversation
1	- Didactical
 Circular linked lists: representation and operations 	demonstration
1	demonstration
 Linked lists on arrays: representation and operations 	
5. Abstract Data Types	- Exposure
 ADT Set: description, domain, 	- Description
• ADT set description, domain, interface and possible representations	- Conversation
 ADT Map: description, domain, 	- Didactical
interface and possible representations	demonstration
 ADT Matrix: description, domain, 	
• ADT Matrix, description, domain, interface and possible representations	
6. Binary Heap	- Exposure
 Definition, representations, specific 	- Description
operations	- Conversation
HeapSort	- Didactical
ADT List	demonstration
 Description, domain, interface and 	
possible representations	
7. ADT Stack	- Exposure
 Description, domain, interface and 	- Description
possible representations on arrays and	- Conversation
linked lists	- Didactical
ADT Queue	demonstration
• Description, domain, interface and	- Case studies
possible representations on arrays,	
circular arrays and linked lists.	
Problems solved with stacks and queues	
8. ADT Deque	- Exposure
Description and possible	- Description
representations	- Conversation
ADT Priority Queue	- Didactical
• Description, domain, interface and	demonstration
possible representations on arrays,	- Case studies
linked lists and heaps	
9. Hash Table	- Exposure
• Direct address tables	- Description
• Hash tables: description, properties	- Conversation
Collision resolution through separate	- Didactical
chaining	demonstration

 10. Hash Table Collision resolution through coalesced hashing Collision resolution through open addressing Containers represented over hash tables 	 Exposure Description Conversation Didactical demonstration
 11. Trees Concepts related to trees Applications of trees Binary Trees Description, properties Domain and interface of ADT Binary Tree Operations for ADT Binary Tree: search, add, remove elements Tree traversals: recursive/non recursive algorithms. 	 Exposure Description Conversation Didactical demonstration
 12. Binary Search Trees Description, properties Representation Operations: recursive and non-recursive algorithms Containers represented over binary search tables 	 Exposure Description Conversation Didactical demonstration
 13. Balanced Binary Search Trees AVL Trees Red-black trees 	 Exposure Description Conversation Didactical demonstration
14. Applications and data structure libraries in different programming languages (Python, C++, Java, C#) Bibliography	 Examples Exposure Description Conversation Didactical demonstration

Bibliography

- 1. T. Cormen, C. Leiserson, R. Rivest, C. Stein: Introduction to algorithms, Third Edition, The MIT Press, 2009
- 2. S. Skiena: The algorithms design manual, Second Edition, Springer, 2008
- 3. N. Karumanchi: Data structures and algorithms made easy, CareerMonk Publications, 2016
- 4. M. A. Weiss: Data structures and algorithm analysis in Java, Third Edition, Pearson, 2012
- 5. R. Sedgewick: Algorithms, Addison-Wesley Publishing, 1984

8.2 Seminar	Teaching methods	Remarks
		Seminar is structured as 2
		hour classes every second
		week.
1. Complexities	- Exposure	
	- Conversation	
	- Examples	

	- Debate	
2. ADT Bag with a generic elements.	- Exposure	
Representations and implementations on an	- Examples	
array. Iterator for ADT Bag.	- Debate	
	- Conversation	
3. Sorted Multi Map – representation and	- Exposure	
implementation on a singly linked list.	- Examples	
	- Debate	
	- Conversation	
4. Bucket sort, Lexicographic sort, radix sort.	- Exposure	
Merging two singly linked lists	- Examples	
	- Debate	
	- Conversation	
5. Written test and project theme allocation.	- Written test	The test takes 1 hour
6. Hash tables. Collision resolution through	- Exposure	
coalesced chaining.	- Examples	
	- Debate	
	- Conversation	
7. Binary Trees	- Exposure	
	- Examples	
	- Debate	
	- Conversation	

Bibliography

- 1. T. Cormen, C. Leiserson, R. Rivest, C. Stein: Introduction to algorithms, Third Edition, The MIT Press, 2009
- 2. S. Skiena: The algorithms design manual, Second Edition, Springer, 2008
- 3. N. Karumanchi: Data structures and algorithms made easy, CareerMonk Publications, 2016
- 4. M. A. Weiss: Data structures and algorithm analysis in Java, Third Edition, Pearson, 2012
- 5. R. Sedgewick: Algorithms, Addison-Wesley Publishing, 1984

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The content of this discipline is consistent with the content of the Data structures and algorithms courses from other universities in Romania and abroad.
- The content of the discipline ensures the necessary fundamental knowledge needed for using abstract data types and data structures in application design.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	 Correctness and completeness of the assimilated knowledge Knowledge of applying the course concepts 	Written evaluation (in the exam session): written exam	60%

	Realization of a project – design, development and documentation of an application that uses an ADT and a given data structure as representation for the ADT. Project allocation will be done in Seminar 5.	Correctness of the documentation (specifications, algorithms, complexities).	20%
10.5 Seminar activities	 Written test from seminar 5. Seminar activity Project stage 	Written test (50% from the seminar grade) Seminar activity (40% from the seminar grade) Project stage (10% from seminar grade)	20%
10.6 Minimum performan		to prove that he/she has acquir	ad an accontable loval

• Knowledge of basic concepts. Each student has to prove that he/she has acquired an acceptable level of knowledge and understanding of the domain, that he/she is capable of expressing the acquired knowledge in a coherent form, that he/she has the ability of using this knowledge for problem solving.

• For participating at the written exam, a student must have at least 5 seminar attendances.

• For successfully passing the examination, a student must have at least 5 for the project and as a final grade.

Date	Signature of course coordinator	Signature of seminar coordinator
01.05.2017	Lect. PhD. Marian Zsuzsanna	Lect. PhD. Marian Zsuzsanna

Date of approval

Signature of the head of department

Prof. PhD. Andreica Anca