SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme /	Didactic Informatics
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline Programming paradigms							
2.2 Course coordinator Prof.PhD. Bazil Parv							
2.3 Seminar coordinator				Prof.PhD. Bazil Parv			
2.4. Year of	1	2.5	1	2.6. Type of	Е	2.7 Type of	elective
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1
				seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6	14
				seminar/laboratory	
Time allotment:					
Learning using manual, course support, bibliography, course notes					
Additional documentation (in libraries, on electronic platforms, field documentation)					
Preparation for seminars/labs, homework, papers, portfolios and essays					55
Tutorship					14
Evaluations					14
Other activities:					-

3.7 Total individual study hours	133
3.8 Total hours per semester	175
3.9 Number of ECTS credits	7

4. Prerequisites (if necessary)

4.1. curriculum	 Fundamentals of Programming 		
	Object-Oriented Programming		
	 Functional and Logic Programming 		
4.2. competencies	Average programming skills		

5. Conditions (if necessary)

5.1. for the course	Videoprojector, Internet access
5.2. for the seminar /lab	Computers, Internet access, UML tool
activities	

6. Specific competencies acquired

<u> </u>	Petri		eteneres acquired
=	es	•	Understanding and working with basic concepts in computer programming;
	ıci	•	Capability of analysis and synthesis;
SSic	etei	•	Proficient use of tools and languages specific to software systems development;
ofe	ube	•	Knowing the specifics of main programming paradigms.
Pr	competencies		
		•	Professional communication skills; concise and precise description, both oral and
=	ies		written, of professional results;
Transversal	competencies	•	Independent work capabilities; able to fulfill different roles;
SVe	ete	•	Antepreneurial skills.
and	np		1
	CO1		

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Know and understand fundamental concepts of programming. Be able to apply different programming paradigms to different programming projects
7.2 Specific objective of the discipline	 At the end of the course, students should know the main features of different programming paradigms: procedural, object-oriented, concurrent, functional, logical, event-based, scripting have a good understanding of the following concepts: value, type, variable, binding, procedural abstraction, data abstraction, object, class, component, interface, polymorphism; learn the similarities and differences between different programming paradigms in terms of the concepts they implement

8. Content

8.1 Course	Teaching methods	Remarks
Programming paradigms. Definitions. Main programming paradigms. Programming styles. Evolution of programming languages	 Interactive exposure Explanation Conversation Didactical demonstration 	
2. Basic concepts 1. Values and types. Variables and storage	 Interactive exposure Explanation Conversation Didactical demonstration 	
3. Basic concepts 2. Bindings and scope. Control flow	 Interactive exposure Explanation Conversation Didactical demonstration 	
4. Advanced concepts 1. Type systems. Composite types	 Interactive exposure Explanation Conversation Didactical demonstration 	
5. Advanced concepts 2. Subroutines and control abstraction (procedural abstraction)	 Interactive exposure Explanation Conversation Didactical demonstration 	
6. Advanced concepts 3. Data abstraction and object orientation. Generic abstraction	 Interactive exposure Explanation Conversation Didactical demonstration 	

7. Advanced concepts 4. Errors and events. Concurrency	 Interactive exposure Explanation Conversation Didactical demonstration
8. Paradigms 1. Imperative programming	 Interactive exposure Explanation Conversation Didactical demonstration
9. Paradigms 2. Object-oriented programming	 Interactive exposure Explanation Conversation Didactical demonstration
10. Paradigms 3. Concurrent programming	 Interactive exposure Explanation Conversation Didactical demonstration
11. Paradigms 4. Functional programming	 Interactive exposure Explanation Conversation Didactical demonstration
12. Paradigms 5. Logic programming	 Interactive exposure Explanation Conversation Didactical demonstration
13. Paradigms 6. Event-driven programming	Interactive exposureConversation
14. Paradigms 7. Scripting	 Interactive exposure Explanation Conversation Didactical demonstration

Bibliography

- 1. SCOTT, MICHAEL L.: *Programming Language Pragmatics*, 4th ed, Morgan-Kaufmann, 2016
- 2. SEBESTA, ROBERT W.: Concepts of Programming Languages, 10th ed, Pearson Education, 2012
- 3. SZYPERSKI, CLEMENS: *Component Software. Beyond Object-Oriented Programming*, Addison-Wesley (1st ed. 1998, 2nd ed. 2002 with GRUNTZ, DOMINIK and MURER, STEFAN).
- 4. STROUSTRUP, BJARNE: *The C++ Programming Language Special Edition*, Addison-Wesley, 2000 chapter 2
- 5. VAN ROY, PETER; HARIDI, SEIF: Concepts, Techniques and Models of Computer Programming, MIT Press, 2004
- 6. WATT, David A.: Programming Language Design Concepts, Wiley, 2004
- 7. WEGNER, PETER: Concepts and paradigms of OOP, OOPSLA '89 Keynote talk

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Establishing the paper title	Conversation, debate, case studies, presentations	Seminar is organized as a total of 14 hours – 2 hours every other week
2. Establish the project title	Conversation, debate, case studies, examples	
3. Paper presentations & project progress reports	Exposure, debate, case studies, examples	
4. Paper presentation & project progress reports	Exposure, debate, case studies, examples	
5. Paper presentations & project progress reports	Exposure, debate, case studies, examples	
6. Paper presentations & project progress reports	Exposure, debate, case studies, examples	
7. Project presentation	Exposure, live demos	

Bibliography

Students will serch and use programming paradigms documentation

- on the department server (win/labor/Romana/master/PP)
- on the web, using main CS databases

The ELISA project http://jklunder.home.xs4all.nl

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- This course follows the IEEE and ACM Curriculla Recommendations for Software Engineering studies;
- Courses with similar content are taught in the major universities in Romania offering similar study programs;
- Course content is considered very important by the software companies for improving average software development skills

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)				
10.4 Course	 knowing the basic concepts of programming applying different paradigms to different problem domains 	Written exam	40%				
10.5 Seminar/lab activities	 be able to study and review literature regarding programming paradigms be able to solve a problem using different paradigms 	 Paper work Project work Seminar/lab attendance Default 	20% 20% 10%				
10.6 Minimum performance standards							
 At least grade 5 (from a scale of 1 to 10) at written exam, paper and project work. 							

Date	Signature of course coordinator	Signature of seminar coordinator
April 29, 2017	Prof.PhD. Bazil PARV	Prof.PhD. Bazil PARV
Date of approval		Signature of the head of department
		Prof.PhD. Anca ANDREICA