SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş Bolyai University
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme / Qualification	Component-based programming

2. Information regarding the discipline

2.1 Name of the discipline			Optimization models					
2.2 Course coordinator				Assoc. Prof. Nicolae Popovici, Ph.D.				
2.3 Seminar coordinator			As	Assoc. Prof. Nicolae Popovici, Ph.D.				
2.4. Year of study 1 2.5 Semester				2.6. Type of	Exam	2.7 Type of	Compulsory	
				evaluation		discipline		

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3 seminar	1
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6 seminar	14
Time allotment:					
Learning using manual, course support, bibliography, course notes					
Additional documentation (in libraries, on electronic platforms, field documentation)					
Preparation for seminars/labs, homework, papers, portfolios and essays					28
Tutorship					
Evaluations					35
Other activities:					-

3.7 Total individual study hours	133
3.8 Total hours per semester	175
3.9 Number of ECTS credits	7

4. Prerequisites (if necessary)

4.1. curriculum	Linear algebra;
	Geometry;
	 Mathematical analysis.
4.2. competencies	Basic notions of linear algebra, analytical geometry and differential
	calculus in the n-dimensional Euclidean space.

5. Conditions (if necessary)

5.1. for the course	
5.2. for the seminar /lab	
activities	

6. Specific competencies acquired

	1		- I
Professional	competencies	•	Ability to understand and manipulate advanced concepts and results in the field of optimization theory. Ability to use mathematical methods and implementable algorithms for solving optimization problems.
Transversal	competencies	•	Ability to model and analyze from a mathematical point of view practical optimization problems from other sciences, economics and engineering.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the	The aim of this course is to present several classes of practical optimization			
discipline	models along with numerical solution algorithms.			
7.2 Specific objective of the	he Students should acquire knowledge about:			
discipline	Scalar optimization models;			
	Vector (multicriteria) optimization models;			
	Dynamic optimization models.			

8. Content

8.1 Course	Teaching methods	Remarks
1. Linear optimization models. Duality theorems.	Direct instruction,	
	mathematical proof,	
	exemplification	
2. The Simplex algorithm in primal form.	Direct instruction,	
	mathematical proof,	
	exemplification	
3. The Simplex algorithm in dual form.	Direct instruction,	
	mathematical proof,	
	exemplification	
4. Extended linear optimization problems.	Direct instruction,	
	mathematical proof,	
	exemplification	
5. Integer optimization problems.	Direct instruction,	
	mathematical proof,	
	exemplification	
6. Matrix games.	Direct instruction,	
	mathematical proof,	
	exemplification	
7. Convex optimization models.	Direct instruction,	
	mathematical proof,	
	exemplification	
8. The best approximation problem.	Direct instruction,	
	mathematical proof,	
	exemplification	
9. The Fermat-Weber (median location) problem.	Direct instruction,	
	mathematical proof,	
	exemplification	
10. The smallest enclosing ball (center location)	Direct instruction,	
problem.	mathematical proof,	
	exemplification	

11. Multicriteria optimization models.	Direct instruction,
	mathematical proof,
	exemplification
12. Multicriteria location problems.	Direct instruction,
	mathematical proof,
	exemplification
13. Extended location problems, involving	Direct instruction,
additional cost functions.	mathematical proof,
	exemplification
14. Dynamic optimization models.	Direct instruction,
	mathematical proof,
	exemplification

Bibliography

- 1. BOYD, S., VANDENBERGHE, L.: Convex Optimization, Cambridge University Press, 2004.
- 2. BRECKNER, W.W.: Cercetare operațională, Universitatea "Babeș-Bolyai", Facultatea de Matematică, Cluj-Napoca, 1981.
- 3. EHRGOT, M.: Multicriteria Optimization. Springer, Berlin Heidelberg New York, 2005.
- 4. MORDUKHOVICH, B.S., NAM, N.M., An easy path to convex analysis and applications, Morgan & Claypool Publishers, Milton Keynes, 2014.
- 5. POPOVICI, N.: Optimizare vectorială, Casa Carții de Știință, Cluj-Napoca, 2005.
- 6. VANDERBEI, R.: Linear Programming. Foundations and Extensions, Springer, Boston, 2008.

8.2 Seminar	Teaching methods	Remarks
1. Linear optimization problems solved by means	Problem-based	2 hours
of the Simplex algorithm in primal form.	instruction, debate,	
	mathematical proofs	
2. Linear optimization problems solved by means	Problem-based	2 hours
of the Simplex algorithm in dual form.	instruction, debate,	
	mathematical proofs	
3. Integer optimization problems solved by the	Problem-based	2 hours
Gomory's cutting planes method.	instruction, debate,	
	mathematical proofs	
4. Matrix games solved via linear optimization.	Problem-based	2 hours
	instruction, debate,	
	mathematical proofs	
5. Multicriteria linear optimization problems	Problem-based	2 hours
solved by scalarization and the Simplex	instruction, debate,	
algorithm.	mathematical proofs	
6. Planar location problems.	Problem-based	2 hours
	instruction, debate,	
	mathematical proofs	
7. Network-type dynamic optimization problems.	Problem-based	2 hours
	instruction, debate,	
	mathematical proofs	

Bibliography

- 1. BRECKNER, B.E., POPOVICI, N.: Probleme de cercetare operațională, EFES, Cluj-Napoca, 2006.
- 2. BRECKNER, W.W., DUCA, D.: Culegere de probleme de cercetare operationala, Universitatea Babes-Bolyai, Facultatea de Matematica, Cluj-Napoca, 1983.
- 3. VANDERBEI, R.: Linear Programming. Foundations and Extensions, Springer, Boston, 2008.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The course ensures a solid theoretical background, according to national and international standards

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)				
10.4 Course	 Knowledge of theoretical concepts and capacity to rigorously prove the main theorems; Ability to solve practical exercises and theoretical problems 	Written exam	70%				
10.5 Seminar/lab activities	- Attendance and active class participation	Continuous evaluation	30%				
10.6 Minimum performance standards							
The final grade should be greater than or equal to 5.							

Date	Signature of course coordinator	Signature of seminar coordinator
15.04.2016	Assoc. Prof. Nicolae Popovici, Ph.D.	Assoc. Prof. Nicolae Popovici, Ph.D.
Date of approval		Signature of the head of department
		Prof. Octavian Agratini, Ph.D.