1. Information regarding the programme

1.1 Higher education	Babeş Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme /	Component-based Programming
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline Programming paradigms							
2.2 Course coordinator Prof.PhD. Bazil Parv							
2.3 Seminar coordinator Prof.PhD. Bazil Parv							
2.4. Year of	1	2.5	1	2.6. Type ofE2.7 Type ofcompulsory			
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 cours	e 2	3.3	1
				seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5 cours	e 28	3.6	14
				seminar/laboratory	
Time allotment:					Hours
Learning using manual, course support, bibliography, course notes					30
Additional documentation (in libraries, on electronic platforms, field documentation)					30
Preparation for seminars/labs, homework, papers, portfolios and essays				70	
Tutorship					14
Evaluations					14
Other activities:					-
3.7 Total individual study hours		158			• •
3.8 Total hours per semester		200			

8

4. Prerequisites (if necessary)

3.9 Number of ECTS credits

4.1. curriculum	Fundamentals of Programming
	Object-Oriented Programming
	Functional and Logic Programming
4.2. competencies	Average programming skills
5. Conditions (if necessar	

(II necessary)

5.1. for the course	Videoprojector, Internet access
5.2. for the seminar /lab	• Computers, Internet access, UML tool
activities	

6. Specific competencies acquired

Professional competencies	 Understanding and working with basic concepts in computer programming; Capability of analysis and synthesis; Proficient use of tools and languages specific to software systems development; Knowing the specifics of main programming paradigms.
Transversal competencies	 Professional communication skills; concise and precise description, both oral and written, of professional results; Independent work capabilities; able to fulfill different roles; Antepreneurial skills.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Know and understand fundamental concepts of programming. Be able to apply different programming paradigms to different programming projects
7.2 Specific objective of the discipline	 At the end of the course, students should know the main features of different programming paradigms: procedural, object-oriented, concurrent, functional, logical, event-based, scripting have a good understanding of the following concepts: value, type, variable, binding, procedural abstraction, data abstraction, object, class, component, interface, polymorphism; learn the similarities and differences between different programming paradigms in terms of the concepts they implement

8. Content

8.1 Course	Teaching methods	Remarks
 Programming paradigms. Definitions. Main programming paradigms. Programming styles. Evolution of programming languages 	 Interactive exposure Explanation Conversation Didactical demonstration 	
2. <i>Basic concepts 1</i> . Values and types. Variables and storage	 Interactive exposure Explanation Conversation Didactical demonstration 	
3. <i>Basic concepts 2</i> . Bindings and scope. Control flow	 Interactive exposure Explanation Conversation Didactical demonstration 	
4. Advanced concepts 1. Type systems. Composite types	 Interactive exposure Explanation Conversation Didactical demonstration 	
5. Advanced concepts 2. Subroutines and control abstraction (procedural abstraction)	 Interactive exposure Explanation Conversation Didactical demonstration 	
6. Advanced concepts 3. Data abstraction and object orientation. Generic abstraction	 Interactive exposure Explanation Conversation Didactical demonstration 	
7. Advanced concepts 4. Errors and events. Concurrency	Interactive exposureExplanation	

	Conversation Didectical demonstration	
	Didactical demonstration	
8. Paradigms 1. Imperative programming	Interactive exposure Evaluation	
	 Explanation Conversation 	
	 Didactical demonstration 	
0 David lines 2 Object oriented and anomalies	Interactive exposure	
9. Paradigms 2. Object-oriented programming	Explanation	
	Conversation	
	 Didactical demonstration 	
10. Paradigms 3. Concurrent programming	Interactive exposure	
10. <i>I uruurgins</i> 5. Concurrent programming	• Explanation	
	Conversation	
	Didactical demonstration	
11. Paradigms 4. Functional programming	Interactive exposure	
	• Explanation	
	Conversation	
	Didactical demonstration	
12. Paradigms 5. Logic programming	• Interactive exposure	
	Explanation	
	Conversation	
	Didactical demonstration	
13. Paradigms 6. Event-driven programming	• Interactive exposure	
	Conversation	
14. Paradigms 7. Scripting	Interactive exposure	
	• Explanation	
	Conversation	
	Didactical demonstration	
Bibliography		
1. SCOTT, MICHAEL L.: Programming Language Pragma		
2. SEBESTA, ROBERT W.: Concepts of Programming Lan	guages, 10 th ed, Pearson Education	, 2012
3. SZYPERSKI, CLEMENS: Component Software. Beyond	Object-Oriented Programming, Ad	ldison-Wesley (1st
ed. 1998, 2 nd ed. 2002 with GRUNTZ, DOMINIK and MU	JRER, STEFAN).	
4. STROUSTRUP, BJARNE: The C++ Programming Lang	uage Special Edition, Addison-Wes	sley, 2000 chapter 2
5. VAN ROY, PETER; HARIDI, SEIF: Concepts, Techniqu	es and Models of Computer Progra	mming, MIT Press,
2004		
6. WATT, David A.: Programming Language Design Conce	epts, Wiley, 2004	
7. WEGNER, PETER: Concepts and paradigms of OOP, OC	OPSLA '89 Keynote talk	
8.2 Seminar / laboratory	Teaching methods	Remarks
1. Establishing the paper title	Conversation, debate, case	Seminar is
2. Louis and puper and	studies, presentations	organized as a
	studies, presentations	total of 14 hours
		-2 hours every
		other week
2. Establish the project title	Conversation, debate, case	
	studies, examples	

	5			
8.2 Seminar / laboratory	Teaching methods	Remarks		
1. Establishing the paper title	Conversation, debate, case	Seminar is		
	studies, presentations	organized as a		
		total of 14 hours		
		-2 hours every		
		other week		
2. Establish the project title	Conversation, debate, case			
	studies, examples			
3. Paper presentations & project progress reports	Exposure, debate, case			
	studies, examples			
4. Paper presentation & project progress reports	Exposure, debate, case			
	studies, examples			
5. Paper presentations & project progress reports	Exposure, debate, case			
	studies, examples			
6. Paper presentations & project progress reports	Exposure, debate, case			
	studies, examples			
7. Project presentation	Exposure, live demos			
Bibliography				
Students will serch and use programming paradigms docu	umentation			

• on the department server (win/labor/Romana/master/PP)

• on the web, using main CS databases The ELISA project <u>http://jklunder.home.xs4all.nl</u>

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- This course follows the IEEE and ACM Curriculla Recommendations for Software Engineering studies;
- Courses with similar content are taught in the major universities in Romania offering similar study programs;
- Course content is considered very important by the software companies for improving average software development skills

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)	
10.4 Course	 knowing the basic concepts of programming applying different paradigms to different problem domains 	Written exam	40%	
10.5 Seminar/lab activities	 be able to study and review literature regarding programming paradigms be able to solve a problem using different paradigms 	 Paper work Project work Seminar/lab attendance Default 	20% 20% 10% 10%	
10.6 Minimum performance standards				
• At least grade 5 (from a scale of 1 to 10) at written exam paper and project work.				

• At least grade 5 (from a scale of 1 to 10) at written exam, paper and project work.

Prof.PhD. Bazil PARV

Date

Signature of course coordinator

Signature of seminar coordinator

April 29, 2016

Prof.PhD. Bazil PARV Signature of the head of department

Date of approval

.....

Prof.PhD. Anca ANDREICA