SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babes-Bolyai University Cluj-Napoca
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Master
1.6 Study programme /	Advanced Mathematics
Qualification	

2. Information regarding the discipline

2.1 Name of the	e dis	scipline	Mo	Morse theory and applications				
2.2 Course coor	din	ator		Prof.dr. Varga Csaba				
2.3 Seminar coo	ordi	nator		Prof.dr. Varga Csaba				
2.4. Year of	Ι	2.5	4	2.6. Type of	С	2.7 Type of	Optional/DS	
study		Semester		evaluation		discipline		

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1
				seminar/laboratory	
3.4 Total hours in the curriculum	36	Of which: 3.5 course	24	3.6	12
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course suppor	t, bił	oliography, course notes	5		42
Additional documentation (in libraries, on electronic platforms, field documentation)					40
Preparation for seminars/labs, homework, papers, portfolios and essays				60	
Tutorship					12
Evaluations					10
Other activities:					
3.7 Total individual study hours		164			<u> </u>
3.8 Total hours per semester200					

5.7 Total mulvidual study nours	104
3.8 Total hours per semester	200
3.9 Number of ECTS credits	8

4. Prerequisites (if necessary)

4.1. curriculum	Differential and Algebraic topology, PDE's
4.2. competencies	Functional Analysis, Critical points theory
	Maximum principle

5. Conditions (if necessary)

5.1. for the course	• videoprojector
5.2. for the seminar /lab	• videoprojector
activities	

6. Specific competencies acquired

Professional competencies	 The ability to understand and manipulate concepts, results and theories advanced in mathematics Ability to use the knowledge gained and complementary in achieving a PhD in Mathematics
Transversal competencies	• Ability to self-improvement and to train continuously

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• to present the basic concepts and results in critical points and Morse theory and applicationin PDE's.
7.2 Specific objective of the discipline	 basic concepts and tools of critical points theory main concepts and results concerning critical groups and Morse inequalities
	 basic concepts of algebraic topology homotopical and homological linking applications to nonlinear PDE's.

8. Content

8.1 Course	Teaching methods	Remarks
1. Sobolev spaces	Expositions: description,	
	explanation, class lectures,	
	dialog-based lectures,	
	lectures with	
	demonstrations,	
	introductive lectures,	
	synthesis lectures.	
	Conversations : debate, dialog,	
	introductive conversations,	
	conversations for	
	knowledge consolidation,	
	conversations to	
	systematize and synthesize	
	knowledge	
	Use of problems: use of	
	problem questions, problems	
	and problem situations.	
2. Critical points and Principle of Symmetric Criticality	the same as before	
3. Abstract formulation of the problems and example	the same as before	

4. Homotopy and Alexander-Spanier cohomology	the same as before
5. Compactness conditions and deformations lemmas	the same as before
6. Critical groups, homotopical and homological	the same as before
linking	
7. Nontrivial critical and mountain pass points	the same as before
8. p-linear eigenvalue problem	the same as before
9. Mountain pass solutions and cohomological local	the same as before
splitting	
10. Jumping nonlinearity and Dancer-Fucik spectrum	the same as before
11. Indefinite eigenvalue problem	the same as before
12. Anisotropic systems	the same as before

Bibliography

1. K. Perera, R.P. Agarwal, Donal O'Regan, Morse theoretic Aspects of p-Laplaccian Operators, AMS, 2010.

2. K. Perera, M. Schecter, Topics in critical point theory, Cambridge University Press, 2013.

3. K.-C. Chang, Infinite Dimensional Morse Theory and Multiple Solution Problems, Birkhauser Boston 1993.

4. R. A. Adams, Sobolev Space. Academic Press, 1975.

5. E. Spanier, Algebraic Topology, McGraw-Hill Book, 1966.

6. A. Kristaly, V. Radulescu, Cs. Varga, Variational Principles in Mathematical

Physics, Geometry, and Economics, 2010.

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Compact embeddings of Sobolev spaces	Conversations: debate, dialog,	
	introductive conversations,	
	conversations for	
	knowledge consolidation,	
	conversations to	
	systematize and synthesize	
	knowledge	
	Use of problems: use of	
	problem questions,	
	problems and problem	
	situations	
2. Applications of the Principle of Symmetric Criticality	the same as before	
 Examples and exercises concerning p-Laplacian problems 	the same as before	
4. Examples and exercises concerning homotopy and Alexander-Spanier cohomology	the same as before	
5. Compactness conditions and deformations lemmas	the same as before	
6. Examples and exercises homotopical and homological linking sets	the same as before	
7. Calculation of the critical groups in some concrete examples	the same as before	
8. Examples and exercises concerning p-linear eigenvalue problem	the same as before	
9. Dancer-Fucik spectrum	the same as before	
10. Jumping nonlinearity	the same as before	
11. Indefinite eigenvalue problem	the same as before	
12. Examples and exercises concerning anisotropic problems	the same as before	

Bibliography

1. K. Perera, R.P. Agarwal, Donal O'Regan, Morse theoretic Aspects of p-Laplaccian Operators, AMS, 2010.

2. K. Perera, M. Schecter, Topics in critical point theory, Cambridge University Press, 2013.

3. K.-C. Chang, Infinite Dimensional Morse Theory and Multiple Solution Problems, Birkhauser Boston 1993.

4. R. A. Adams, Sobolev Space. Academic Press, 1975.

5. E. Spanier, Algebraic Topology, McGraw-Hill Book, 1966.

6. A. Kristaly, V. Radulescu, Cs. Varga, Variational Principles in Mathematical

Physics, Geometry, and Economics, 2010.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The syllabus of this course is focused on the multivalued operator theory, as a basis for a good research activity through the Doctoral School in Mathematics. Moreover, the course propose the following three important directions:
- 1. the understanding of the main concepts in critical points theory;
- 2. the use of the most important linking, mountain pass theorem;
- 3. the applications of critical points and Morse theory to PDE's.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course		Middle term written test	25%
		Final Written Test	50%
10.5 Seminar/lab activities		Written and Oral Report	25%
10.6 Minimum performance	e standards		I.
Successful passing of the e	xam is conditioned by the fi	nal grade that has to be at leas	t 5.

All university official rules with respect to students attendance of academic activities, as well as to cheating and plagiarism, are valid and enforced.

Date	Signature of course coordinator	Signature of seminar coordinator
April 25 th , 2016	Prof.dr. Varga Csaba	Prof.dr. Varga Csaba
Date of approval	Signature of the head of department	
April 25 th , 2016	Prof.dr. Octavian Agratini	