SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş-Bolyai University Cluj-Napoca
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Master
1.6 Study programme /	Advanced Mathematics (Matematici avansate)
Qualification	

2. Information regarding the discipline

2.1 Name of the	e dis	•	Geometric function theory in several complex variables (Teoria geometrică a funcțiilor de mai multe variabile complexe)					
2.2 Course coor	2.2 Course coordinator Professor Gabriela KOHR							
2.3 Seminar cod	2.3 Seminar coordinator Professor Gabriela KOHR							
2.4. Year of	2	2.5	3	2.6. Type of C 2.7 Type of Optional/DS				
study		Semester		evaluation		discipline		

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1 sem
				seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6	14
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course suppor	t, bit	oliography, course notes	S		42
Additional documentation (in libraries, on electronic platforms, field documentation)					32
Preparation for seminars/labs, homework, papers, portfolios and essays					42
Tutorship					9
Evaluations					8
Other activities:					-
3.7 Total individual study hours		133			
3.8 Total hours per semester		175			

4. Prerequisites (if necessary)

3.9 Number of ECTS credits

4.1. curriculum	Complex analysis; Real functions; Functional analysis.		
4.2. competencies	The are useful logical thinking and mathematical notions and		
	results from the above mentioned fields		

7

5. Conditions (if necessary)

5.1. for the course	Classroom with blackboard/video projector
5.2. for the seminar /lab	Classroom with blackboard/video projector
activities	

6. Specific competencies acquired

or special		ompetencies dequired
nal	•	Ability to understand and manipulate concepts, individual results and advanced mathematical theories.
Professional competencies	•	Ability to use scientific language and to write scientific reports and papers.
	•	Ability to inform themselves, to work independently or in a team in order to carry out studies and to
		solve complex problems.
Transversal competencies	•	Ability to use advanced and complementary knowledge in order to obtain a PhD in Pure Mathematics, Applied Mathematics, or in other fields that use concepts of complex analysis.
Tran	•	Ability for continuous self-perfecting and study.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Knowledge, understanding and use of main concepts and results of geometric function theory of several complex variables. Knowledge, understanding and use of methods of complex analysis in one or higher dimensions in the study of special problems in pure and applied mathematics. Ability to use and apply concepts and fundamental results of advanced mathematics in the study of specific problems of function theory in Cⁿ.
7.2 Specific objective of the discipline	 Acquiring basic and advanced knowledge in geometric function theory in Cⁿ. Understanding of main concepts and results in the theory of holomorphic mappings on the unit ball in Cⁿ. Knowledge, understanding and use of advanced topics in mathematics in the study of special problems in several complex variables. Ability student involvement in scientific research.

8. Content

8.1 Course	Teaching methods	Remarks
1. The Carathéodory family <i>M</i> of holomorphic	Lectures, modeling,	
mappings in several complex variables. Growth	didactical demonstration,	
and distortion results, coefficient bounds.	conversation. Presentation	
Compactness of the family M .	of alternative explanations.	
2. Starlike mappings on the unit ball in C ⁿ . Necessary	Lectures, modeling,	
and sufficient conditions for starlikeness. Growth,	didactical demonstration,	
distortion and coefficient bounds.	conversation. Presentation	
	of alternative explanations.	
3. Convex mappings on the unit ball in \mathbb{C}^n . Necessary	Lectures, modeling,	
and sufficient conditions for convexity on the	didactical demonstration,	
Euclidean unit ball and the unit polydisc in \mathbb{C}^n .	conversation. Presentation	

	of alternative explanations.
4. Growth, distortion and coefficient bounds for	Lectures, modeling,
convex mappings on the unit ball in \mathbb{C}^n .	didactical demonstration,
	conversation. Presentation
	of alternative explanations.
5. Loewner chains and transition mappings (evolution	Lectures, modeling,
families) in C ⁿ .	didactical demonstration,
	conversation. Presentation
	of alternative explanations.
6. Loewner chains, Herglotz vector fields and the	Lectures, modeling,
generalized Loewner differential equation in C ⁿ .	didactical demonstration,
	conversation. Presentation
	of alternative explanations.
7. Kernel convergence and biholomorphic	Lectures, modeling,
mappings on the unit ball in \mathbb{C}^n . Applications	didactical demonstration,
in the theory of Loewner chains.	conversation. Presentation
an une unesigned zoon mer enumer	of alternative explanations.
8. The solutions of the generalized Loewner	Lectures, modeling,
differential equation in \mathbb{C}^n .	didactical demonstration,
·	conversation. Presentation
	of alternative explanations.
9. The family S ⁰ (B ⁿ) of biholomorphic mappings with	Lectures, modeling,
parametric representation on the unit ball in \mathbb{C}^n .	didactical demonstration,
Characterizations in terms of Loewner chains.	conversation. Presentation
Compactness of the family $S^0(B^n)$. Open problems.	of alternative explanations.
10. Extreme points and support points associated with	Lectures, modeling,
the family $S^0(B^n)$. Open problems and conjectures.	didactical demonstration,
the family 5 (5). Open problems and conjectures.	conversation. Presentation
	of alternative explanations.
11. Univalence criteria on the unit ball in C ⁿ via	Lectures, modeling,
	didactical demonstration,
the theory of Loewner chains. Parametric	conversation. Presentation
representation and asymptotic starlikeness in	of alternative explanations.
higher dimensions.	
12. Extension operators that preserve analytic and	Lectures, modeling,
geometric properties (starlikeness, convexity,	didactical demonstration,
Loewner chains, parametric representation) (I).	conversation. Presentation
	of alternative explanations.
13. Extension operators that preserve analytic and	Lectures, modeling,
geometric properties (starlikeness, convexity,	didactical demonstration,
Loewner chains, parametric representation) (II).	conversation. Presentation
	of alternative explanations.
14. Radii of univalence (starlikeness, convexity,	Lectures, modeling,
· · · · · · · · · · · · · · · · · · ·	didactical demonstration,
•	conversation. Presentation
\$	of alternative explanations.
parametric representation) in higher dimensions.	conversation. Presentation

Bibliography

- 1. I. Graham, G. Kohr, *Geometric Function Theory in One and Higher Dimensions*, Marcel Dekker Inc., New York, 2003.
- 2. G. Kohr, *Basic Topics in Holomorphic Functions of Several Complex Variables*, Cluj University Press, Cluj-Napoca, 2003.
- 3. G. Kohr, P. Liczberski, *Univalent Mappings of Several Complex Variables*, Cluj University Press, Cluj-Napoca, 1998.
- 4. S. Gong, Convex and Starlike Mappings in Several Complex Variables, Kluwer Acad. Publ., Dordrecht, 1998.
- 5. P. Duren, *Univalent Functions*, Springer-Verlag, New York, 1983.
- 6. S.G. Krantz, Function Theory of Several Complex Variables, Reprint of the 1992 Edition, AMS Chelsea

Publishing, Providence, Rhode Island, 2001.

- 7. R. Narasimhan, R., Several Complex Variables, The University of Chicago Press, Chicago, 1971.
- 8. Ch. Pommerenke, *Univalent Functions*, Vandenhoeck & Ruprecht, Göttingen, 1975.
- 9. T. Poreda, *On generalized differential equations in Banach spaces*, Dissertationes Mathematicae, **310** (1991), 1-50.
- 10. M. Range, *Holomorphic Functions and Integral Representations in Several Complex Variables* Springer-Verlag, New York, 1986.
- 11. S. Reich, D. Shoikhet, *Nonlinear Semigroups, Fixed Points, and Geometry of Domains in Banach Spaces*, Imperial College Press, London, 2005.
- 12. W. Rudin, Function Theory in the Unit Ball of Cⁿ, Springer-Verlag, New York, 1980.

8.2 Seminar	Teaching methods	Remarks
1. Examples of mappings in the Carathéodory family <i>M</i> . Special subclasses of <i>M</i> . Distortion and coefficient bounds.	Applications of course concepts. Description of arguments and proofs for solving problems. Homework assignments. Direct answers to students.	1 hour/week
2. Sufficient conditions of starlikeness on the unit ball in C ⁿ . Examples of starlike mappings.	Applications of course concepts. Description of arguments and proofs for solving problems. Homework assignments. Direct answers to students.	1 hour/week
3. Sufficient conditions of convexity on the unit ball in C ⁿ . Examples of convex mappings.	Applications of course concepts. Description of arguments and proofs for solving problems. Homework assignments. Direct answers to students.	1 hour/week
 Starlike mappings of order α on the Euclidean unit ball in Cⁿ, 0≤ α<1. Growth and coefficient bounds. Examples. 	Applications of course concepts. Description of arguments and proofs for solving problems. Homework assignments. Direct answers to students.	1 hour/week
5. Loewner chains and transition mappings (evolution families) in several complex variables. Examples.	Applications of course concepts. Description of arguments and proofs for solving problems. Homework assignments. Direct answers to students.	1 hour/week
6. Loewner chains and the associated Loewer PDE in higher dimensions. Applications.	Applications of course concepts. Description of arguments and proofs for solving problems. Homework assignments. Direct answers to students.	1 hour/week
 The analytical characterizations of starlikeness and spirallikeness of type α on the unit ball in Cⁿ in terms of Loewner chains. 	Applications of course concepts. Description of arguments and proofs for solving problems. Homework assignments. Direct answers to students. Applications of course	1 hour/week 1 hour/week
8. Variation of Loewner chains in C ⁿ .	Applications of course	1 HOUL WEEK

A 11		1
Applications.	concepts. Description of	
	arguments and proofs for	
	solving problems.	
	Homework assignments.	
	Direct answers to students.	
9. Bounded mappings with parametric representation	Applications of course	1 hour/week
on the unit ball in \mathbb{C}^n . Growth and coefficient	concepts. Description of	
bounds. Applications to extremal problems.	arguments and proofs for	
bounds. Applications to extremal problems.	solving problems.	
	Homework assignments.	
	Direct answers to students.	
10. Univalence criteria on the unit ball in C ⁿ via	Applications of course	1 hour/week
the theory of Loewner chains (I).	concepts. Description of	
the theory of 200 miles chamb (2).	arguments and proofs for	
	solving problems.	
	Homework assignments.	
	Direct answers to students.	
11. Univalence criteria on the unit ball in C ⁿ via	Applications of course	1 hour/week
the theory of Loewner chains (II).	concepts. Description of	
the theory of Boewher chams (11).	arguments and proofs for	
	solving problems.	
	Homework assignments.	
	Direct answers to students.	
12. Extension operators that preserve analytic and	Applications of course	1 hour/week
geometric properties (I).	concepts. Description of	
geometric properties (1).	arguments and proofs for	
	solving problems.	
	Homework assignments.	
	Direct answers to students.	
13. Extension operators that preserve analytic and	Applications of course	1 hour/week
geometric properties (II).	concepts. Description of	
geometric properties (11).	arguments and proofs for	
	solving problems.	
	Homework assignments.	
	Direct answers to students.	
14. Radii of univalence on the Euclidean unit ball	Applications of course	1 hour/week
and the unit polydisc in \mathbb{C}^n .	concepts. Description of	
and the unit polytise in C.	arguments and proofs for	
	solving problems.	
	Homework assignments.	
	Direct answers to students.	
	Direct answers to students.	1

Bibliography

- 1. I. Graham, G. Kohr, *Geometric Function Theory in One and Higher Dimensions*, Marcel Dekker Inc., New York, 2003.
- 2. G. Kohr, *Basic Topics in Holomorphic Functions of Several Complex Variables*, Cluj University Press, Cluj-Napoca, 2003.
- 3. P. Duren, I. Graham, H. Hamada, G. Kohr, *Solutions for the generalized Loewner differential equation in several complex variables*, Math. Ann. **347** (2010), 411-435.
- 4. I. Graham, H. Hamada, G. Kohr, M. Kohr, *Extremal properties associated with univalent subordination chains in* Cⁿ, Math. Ann., **359** (2014), 61-99.
- 5. G. Kohr, P. Liczberski, *Univalent Mappings of Several Complex Variables*, Cluj University Press, Cluj-Napoca, 1998.
- 6. P. Curt, *Special Chapters in Geometric Function Theory of Several Complex Variables*, Editura Albastrã, Cluj-Napoca, 2001 (in Romanian).

- 7. S. Gong, Convex and Starlike Mappings in Several Complex Variables, Kluwer Acad. Publ., Dordrecht, 1998.
- 8. S. Gong, The Bieberbach Conjecture, Amer. Math. Soc. Intern. Press, Providence, R.I., 1999.
- 9. S.G. Krantz, *Function Theory of Several Complex Variables*, Reprint of the 1992 Edition, AMS Chelsea Publishing, Providence, Rhode Island, 2001.
- 10. Ch. Pommerenke, Univalent Functions, Vandenhoeck & Ruprecht, Göttingen, 1975.
- 11. T. Poreda, *On generalized differential equations in Banach spaces*, Dissertationes Mathematicae, **310** (1991), 1-50.
- 12. W. Rudin, Function Theory in the Unit Ball of Cⁿ, Springer-Verlag, New York, 1980.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

• The content of this discipline is in accordance with the curricula of the most important universities in Romania and abroad, where the advanced mathematics plays an essential role. This discipline is useful in preparing future researchers in pure and applied mathematics, as well as those who use mathematical models and advanced methods of study in other areas.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)		
10.4 Course	Knowledge of concepts and basic results	Final written test (colloquium) at the end the semester.	60%		
	Ability to justify by proofs theoretical results				
10.5 Seminar/lab activities	Ability to apply concepts and results acquired in the course in mathematical modeling and analysis of problems in fluid mechanics	Evaluation of reports and homework during the semester, and active participation in the seminar activity. A midterm written test.	25%		
	There are valid the official rules of the faculty concerning the attendance of students to teaching activities.				
10.6 Minimum performance standards At least grade 5 (from a scale of 1 to 10) at both final written test and seminar activity during the semester.					

Date Signature of course coordinator Signature of seminar coordinator

2.05.2016 Professor PhD Gabriela KOHR Professor PhD Gabriela KOHR

Date of approval Signature of the head of department

Professor Octavian AGRATINI