1. mormation regarding the	Programme
1.1 Higher education	Babes-Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme /	Software Engineering
Qualification	

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the discipline (en)			Computational Models for Embedded Systems			
(ro)						
2.2 Course coordinator PhI			PhD Lecturer Andreea Vescan			
2.3 Seminar coordinator		PhD Lecturer Andreea Vescan				
2.4. Year of study 2	2.5 Semester	4	2.6. Type of	E	2.7 Type of	Compulsory
			evaluation		discipline	
2.8 Code of the	MME8026		·		•	
discipline						

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1
				seminar/laboratory	
3.4 Total hours in the curriculum	36	Of which: 3.5 course	24	3.6	12
				seminar/laboratory	
Time allotment:				·	hours
Learning using manual, course support	rt, bił	oliography, course notes	5		72
Additional documentation (in libraries, on electronic platforms, field documentation)					24
Preparation for seminars/labs, homework, papers, portfolios and essays					36
Tutorship					3
Evaluations					4
Other activities:				0	
3.7 Total individual study hours 139					
3.8 Total hours per semester		175			
3.9 Number of ECTS credits		7			

4. Prerequisites (if necessary)

4.1. curriculum	•
4.2. competencies	

5. Conditions (if necessary)

5.1. for the course	Video projector, Internet access
5.2. for the seminar /lab	• Laboratory with computers; model checking tools; LPCXpresso,
activities	LabView; FSM/PN tools.

6. Specific competencies acquired

Professional competencies	 Assimilation of mathematical concepts and formal models to understand, verify and validate software systems; Analysis, design, and implementation of software systems Proficient use of methodologies and tools specific to programming languages and software systems Organization of software production processes.
Transversal competencies	 Etic and fair behavior, committment to professional deontology Team work capabilities; able to fulfill different roles Professional communication skills; concise and precise description, both oral and written, of professional results, negociation abilities; Antepreneurial skills; working with economical knowledge; continuous learning Good English communication skills.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the	 know and understand fundamental concepts of embedded
discipline	computation;
useipine	
	 to develop skills in modeling embedded systems with various
	computational models;
	 to describe and verify safety and liveness properties of the
	system being modeled.
7.2 Specific objective of the	 will acquire theoretical aspects regarding specification,
discipline	designing and verification of an embedded system;
	will acquire theoretical aspects regarding various computational
	models for embedded systems;
	 will know how to model a system and specify restrictions on
	functionalities

8. Content		
8.1 Course	Teaching methods	Remarks
1. Introduction. Model: Why?what? how?	Interactive exposure	
Types of systems.	Explanation	
	Conversation	
	Didactical demonstration	
2. Requirements and Safety Requirements.	Interactive exposure	
Model checking	Explanation	
	Conversation	
	Didactical demonstration	
3. Synchronous models	Interactive exposure	

8. Content

	Explanation
	Conversation
	Didactical demonstration
4. Embedded board. Electronic circuit.	
4. Embedded board. Electronic circuit.	Interactive exposure
	Explanation
	Conversation
~ ^	Didactical demonstration
5. Asynchronous models	Interactive exposure
	Explanation
	Conversation
-	Didactical demonstration
6. Finite State Machines	Interactive exposure
	Explanation
	Conversation
	Didactical demonstration
7. Finite State Machines (cont.)	Interactive exposure
	Explanation
	Conversation
	Didactical demonstration
8. Petri Nets	Interactive exposure
	Explanation
	Conversation
	Didactical demonstration
9. Petri Nets (cont.)	Interactive exposure
· · · · ·	Explanation
	Conversation
	Didactical demonstration
10. Timed models	Interactive exposure
	Explanation
	Conversation
	Didactical demonstration
11. Dynamical systems	Interactive exposure
	Explanation
	Conversation
	Didactical demonstration
12. Hybrid systems	Interactive exposure
	Explanation
	Conversation
	Didactical demonstration
Bibliography	

Bibliography

Books

[Kat08] C. Baier, J.-P. Katoen, Principles of Model Checking, ISBN 978-0-262-02649-9, 2008

[Ari08] M. Ben-Ari, Principles of the Spin Model Checker, ISBN 978-1-84628-769-5, 2008

[Noe05] T. Noergaard, Embedded systems architecture: a comprehensive guide to engineers and programmers, Elsevier, 2005

[Hoa04] Hoare, CAR (2004) (1985), Communicating Sequential Processes, Prentice Hall International

[Pon02] M. Pont, Embedded C, Addison-Wesley, 2002

[Boo67] Taylor Booth (1967) Sequential Machines and Automata Theory, John Wiley and Sons, New York. Library of Congress Catalog Card Number: 67-25924.

Articles

[Har87] D. Harel, "Statecharts: A Visual Formalism for Complex Systems", Sci. Comput. Programming 8 (1987), 231-274

[Pet66] Petri, CA (1966) Communication with automata. DTIC Research Report AD0630125

Tutorials

During lectures/seminars/laboratories tutorials will be given for each assignment.

8.2 Seminar / laboratory	Teaching methods	Remarks
Seminar 1	Presentation, Conversation,	
Model Cheking	Problematizations, Discovery,	
• Specifying safety and liveness requirements.	Individual study, Exercises	
 Project Activity, weeks 1-2 		
Seminar 2-3	Presentation, Conversation,	
 FSM Project Activity - LPCXpresso 	Problematizations, Discovery,	
Using Finite State Machines or/and PetriNets	Individual study, Exercises	
to model an embedded system.		
Seminar 4-5	Presentation, Conversation,	
PN Project Activity	Problematizations, Discovery,	
 Using a Petri nets to model an embedded 	Individual study, Exercises	
system		
Seminar 6	Presentation, Conversation,	
Project Activity	Problematizations, Discovery,	
	Individual study, Exercises	

Remark:

- Students will search and use model cheking tools suitable for their Model Checking Project Activity. <u>http://spinroot.com/spin/whatispin.html</u>
- Students will use LPCXpresso fo developing FSM -based embedded project
- Students will search and use FSM/PN tools suitable for their FSM/PN Project Activity.

Bibliography

See from Courses content.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- This course follows the IEEE and ACM Curriculla Recommendations for Computer Science studies;
- The course exists in the studying program of all major universities in Romania and abroad; http://www.seas.upenn.edu/~cis540/ https://inst.eecs.berkeley.edu/~ee249/fa07/ http://www.ict.kth.se/courses/IL2202/ http://users.abo.fi/Imorel/MoCs/ http://bears.ece.ucsb.edu/class/ece253/
- Course content is considered very important by the software companies for improving advance embedded systems modeling and verifying skills.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	The correctness and completeness of the accumulated knowledge of computational models for embedded systems.	Written exam (in the regular session)	40%
	During lectures hours, one quiz is given. The mark Q is given.	One quiz examination during lectures hours	10%
10.5 Seminar/lab activities	Problem definition and specification in JSpin, Show that it is possible to reach the desired end state	Evaluation of the project (modeling, verification properties)	20%
	Use Finite State Machine to model the embedded system.	Evaluation of the project (modeling, I/O, computational model used)	15%
Demonik	Use Petri Nets to model the embedded system.	Evaluation of the project (modeling, I/O, computational model used)	15%

Remark .

- Seminar/Laboratory assignments/Projects laboratory work may not be redone in the retake session.
- Written exams can be taken during the retake session.
- Students from Previous Years to 2016-2017
 - All the above rules apply to students from previous years.
 - Seminar/Laboratory assignments and practical laboratory activity must be redone during didactic activity time (in the 12 weeks before normal session).
- At least grade 5 (from a scale of 1 to 10) at written exam. The final grade computed with the given formula must be at least 5 in order to pass the exam.

Final grade = 40% WrittenExan+10% Quiz+20% ProjectJSpin+15% ProjectFSM+15% ProjectPN

10.6 Minimum performance standards

Each student has to prove that:

 (s)he acquired an acceptable level of knowledge and understanding of the computational models for embedded systems;

 \succ (s)he has the ability to establish certain connections and to use the knowledge in solving different problems.

> Successful passing of the exam is conditioned by the final grade that has to be at least 5.

Date	Signature of course coordinator	Signature of seminar coordinator	
26 April 2016	Lect. PhD. Andreea Vescan,	Lect. PhD. Andreea Vescan	
Date of approval	Signature of the head of department		
	Pro	f. PhD. Anca Andreica	