
SYLLABUS

1. Information regarding the programme
1.1 Higher education
institution

Babeş Bolyai University

1.2 Faculty Faculty of Mathematics and Computer Science
1.3 Department Department of Computer Science
1.4 Field of study Computer Science
1.5 Study cycle Bachelor

1.6 Study programme /
Qualification

Computer Science

2. Information regarding the discipline
2.1 Name of the discipline Formal Languages and Compiler Design
2.2 Course coordinator Assoc.Prof.PhD. Simona Motogna
2.3 Seminar coordinator Assoc.Prof.PhD. Simona Motogna
2.4. Year of
study

3 2.5
Semester

5 2.6. Type of
evaluation

E 2.7 Type of
discipline

Compulsory

3. Total estimated time (hours/semester of didactic activities)
3.1 Hours per week 6 Of which: 3.2 course 2 3.3

seminar/laboratory
2 sem+
2 lab

3.4 Total hours in the curriculum 84 Of which: 3.5 course 28 3.6
seminar/laboratory

56

Time allotment: hours
Learning using manual, course support, bibliography, course notes 20
Additional documentation (in libraries, on electronic platforms, field documentation) 10
Preparation for seminars/labs, homework, papers, portfolios and essays 20
Tutorship 6
Evaluations 10
Other activities: -
3.7 Total individual study hours 66
3.8 Total hours per semester 150
3.9 Number of ECTS credits 6

4. Prerequisites (if necessary)
4.1. curriculum • Data Structures and Algorithms
4.2. competencies • Average programming skills in a high level programming

language

5. Conditions (if necessary)

5.1. for the course •
5.2. for the seminar /lab
activities

• Laboratory with computers; high level programming language
environment (.NET or any Java environement a.s.o.)

6. Specific competencies acquired

Pr
of

es
si

on
al

co

m
pe

te
nc

ie
s • C4.1 Definition of concepts and basic principles of computer science, and their mathematical

models and theories
• C4.2 Interpretation of mathematical and computer science models
• C4.5 Adoption of formal models in specific applications from different domains

T
ra

ns
ve

rs
al

co

m
pe

te
nc

ie
s

CT1 Apply rules to: organized and efficient work, responsabilities of didactical and scientifical
activities and creative capitalization of own potential, while respecting principles and rules for
professional ethics
CT3 Use efficient methods and techniques for learning, knowledge gaining, and research and
develop capabilities for capitalization of knowledge, accomodation to society requirements and
communication in English

7. Objectives of the discipline (outcome of the acquired competencies)

8. Content
8.1 Course Teaching methods Remarks

1. General Structure of a compiler. Compiler
phases

Exposure: description,
explanation, examples,
discussion of case studies

2. Scanning (Lexical Analysis) Exposure: description,
explanation, examples,
discussion of case studies

3. Introductory notions of formal languages.
Grammars

Exposure: description,
explanation, examples,
debate, dialogue

4. Finite Automata Exposure: description,
explanation, examples,
discussion of case studies

5. Equivalence between finite automata and
regular grammars

Exposure: description,
explanation, examples,
proofs

6. Regular languages, regular expressions,
equivalence with finite automata and regular
grammars. Pumping lemma

Exposure: description,
explanation, examples,
proofs, debate, dialogue

7. Context-free grammars, syntax tree Exposure: description,
explanation, examples,
discussion of case studies

8. Push-down automata Exposure: description,
explanation, examples

7.1 General objective of the
discipline

• Be able to understand compiler design and to implement compiler
techniques

• Improved programming skills
7.2 Specific objective of the
discipline

• Acquire knowledge about back-end of a compiler
• Understand and work with formal languages concepts: Chomsky

hierarchy; regular grammars, finite automata and the equivalence
between them; context-free grammars, push-down automata and their
equivalence

• Understand and work with compilers concepts: scanning, parsing

9. Parsing: general notions, classification Exposure: description,
explanation, examples,
discussion of case studies

10. Recursive-descendant parser Exposure: description,
explanation, examples,
debate

11. LL(1) parser Exposure: description,
explanation, examples,
discussion of case studies

12. LR(k) Parsing method. LR(0) parser Exposure: description,
explanation, examples,
discussion of case studies

13. SLR, LR(1), LALR parser Exposure: description,
explanation, examples,
discussion of case studies

14. Scanner generator (lex); Parser generators
(yacc)

Exposure: description,
examples, discussion of
case studies, live demo

Bibliography
1. A.V. AHO, D.J. ULLMAN - Principles of computer design, Addison-Wesley, 1978.
2. A.V. AHO, D.J. ULLMAN - The theory of parsing, translation and compiling, Prentice-Hall, Engl.

Cliffs., N.J., 1972, 1973.
3. D. GRIES - Compiler construction for digital computers,, John Wiley, New York, 1971.
4. MOTOGNA, S. – Metode de proiectare a compilatoarelor, Ed. Albastra, 2006
5. SIPSER, M., Introduction to the theory of computation, PWS Pulb. Co., 1997.
6. CSÖRNYEI ZOLTÁN, Bevezetés a fordítóprogramok elméletébe, I, II., ELTE, Budapest, 1996
7. L.D. SERBANATI - Limbaje de programare si compilatoare, Ed. Academiei RSR, 1987.
8. CSÖRNYEI ZOLTÁN, Fordítási algoritmusok, Erdélyi Tankönyvtanács, Kolozsvár, 2000.
9. DEMETROVICS JÁNOS-DENEV, J.-PAVLOV, R., A számítástudomány matematikai alapjai, Nemzeti
Tankönyvkiadó, Budapest, 1999
8.2 Seminar Teaching methods Remarks

1. Specification of a programming language; BNF
notation

Explanation, dialogue,
case studies

2. Grammars; language generated by a grammar;
grammar corresponding to a language

Dialogue, debate, case
studies, examples, proofs

3. Finite automata: language generated by a FA;
FA corresponding to a language

Dialogue, debate, case
studies, examples, proofs

4. Transformations: finite automata – regular
grammars

Dialogue, debate, case
studies, examples

5. Transformations: regular expressions – finite
automata

Dialogue, debate, case
studies, examples

6. Transformations: regular expressions – regular
grammars

Dialogue, debate, case
studies, examples

7. Optimization of FA, NDFA Dialogue, debate, case
studies, proofs

8. Context free grammars; descendent recursive
parser

Dialogue, debate, case
studies, examples

9. Transformation of cfg Dialogue, debate, case
studies, examples

10. LL(1) parser Dialogue, debate, case
studies, examples

11. LR(0) parsers Dialogue, debate, case
studies, examples

12. SLR parser Dialogue, debate, case
studies, examples

13. LR(1) parser Dialogue, debate, case
studies, examples

14. Push down automata Dialogue, debate,
examples, proofs

Bibliography
1. A.V. AHO, D.J. ULLMAN - Principles of computer design, Addison-Wesley, 1978.
2. A.V. AHO, D.J. ULLMAN - The theory of parsing, translation and compiling, Prentice-Hall, Engl.

Cliffs., N.J., 1972, 1973.
3. MOTOGNA, S. – Metode de proiectare a compilatoarelor, Ed. Albastra, 2006
5. G. MOLDOVAN, V. CIOBAN, M. LUPEA - Limbaje formale si automate. Culegere de probleme, Univ.

Babes-Bolyai, Cluj-Napoca, 1996.,l http://math.ubbcluj.ro/~infodist/alf/INDEX.HTM
8.3 Laboratory Teaching methods Remarks

1. Task 1: Specify a mini-language and
implement scanner
1.1: Mini language specification (BNF
notation)

Explanation, dialogue,
case studies

2. Task 1: Specify a mini-language and
implement scanner
1.2: implement main functions in scanning

Explanation, dialogue,
case studies

3. Task 1: Specify a mini-language and
implement scanner
1.3: Symbol Table organization

Explanation, dialogue,
case studies

4. Task 1: Specify a mini-language and
implement scanner
1.4: Main program, testing + delivery

Testing data discussion,
evaluation

5. Task 2: regular grammars + finite automata +
transformations
2.1: Define data structures for RG and FA;
implement transformations

Explanation, dialogue,
case studies

6. Task 2: regular grammars + finite automata +
transformations
2.2: Main program, testing + delivery

Testing data discussion,
evaluation

7. Task 3: context free grammars + equivalent
transformations of cfg
3.1: extend task 2 for cfg; implement
transformations

Explanation, dialogue,
case studies

8. Task 3: context free grammars + equivalent
transformations of cfg
3.2: Main program, testing + delivery

Testing data discussion,
evaluation

9. Task 4: Parser implementations
4.1: define data structures and architecture of
application

Explanation, dialogue,
case studies

One of descendant
recursive, LL(1),
LR(0), SLR

10. Task 4: Parser implementations
4.2: implement main functions in parsing

Explanation, dialogue,
case studies

Task 4 is developed in
teams of 2 students

11. Task 4: Parser implementations
4.3: main program and module integration

Explanation, dialogue,
case studies

12. Task 4: Parser implementations
4.4: testing on small formal grammars

Testing data discussion,
evaluation

13. Task 4: Parser implementations
4.5: testing on mini-language; delivery

Testing data discussion,
evaluation

14. Task 5: use tools for lexer and parser
generator: lex, yacc – implementation +
delivery

Explanation, dialogue,
case studies; evaluation

Bibliography

1. A.V. AHO, D.J. ULLMAN - Principles of computer design, Addison-Wesley, 1978.
2. A.V. AHO, D.J. ULLMAN - The theory of parsing, translation and compiling, Prentice-Hall, Engl.

Cliffs., N.J., 1972, 1973.
3. D. GRIES - Compiler construction for digital computers,, John Wiley, New York, 1971.
4. MOTOGNA, S. – Metode de proiectare a compilatoarelor, Ed. Albastra, 2006
5. L.D. SERBANATI - Limbaje de programare si compilatoare, Ed. Academiei RSR, 1987.
6. MOTOGNA S. - http://www.cs.ubbcluj.ro/~motogna/FLandCD.htm 	

9. Corroborating the content of the discipline with the expectations of the epistemic community,
professional associations and representative employers within the field of the program

• The course respects the IEEE and ACM Curriculla Recommendations for Computer Science studies;
• The course exists in the studying program of all major universities in Romania and abroad;
• The content of the course is considered the software companies as important for average

programming skills

10. Evaluation
Type of activity 10.1 Evaluation criteria 10.2 Evaluation methods 10.3 Share in the

grade (%)
10.4 Course - know the basic principle

of the domain;
- apply the course
concepts
- problem solving

Written exam

70%

10.5Lab activities - be able to implement
course concepts and
algorithms
- apply techniques for
different classes of
programming languages

-Practical examination
during all semester
-documentation
-portofolio
-continous observations

20%

10.6 Seminar activities - be able to apply
algorithms, understand
examples
- problem solving

- problems solved
- homeworks delivered
- continuous observations
during semester

10.6 Minimum performance standards
Ø Attend 75% of seminar activities during semester AND attend 90% of lab activities during semster
Ø At least grade 5 (from a scale of 1 to 10) at both written exam and laboratory work.

Date Signature of course coordinator Signature of seminar coordinator

.................. Assoc.Prof.PhD. Simona MOTOGNA Assoc.Prof.PhD. Simona MOTOGNA

Date of approval Signature of the head of department

... …............................

