1. Information regarding the programme

1.1 Higher education	Babeş Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme /	Applied Computational Intelligence
Qualification	

2. Information regarding the discipline

2.1 Name of the disciplineMathematical Modeling							
2.2 Course coor	din	ator	Assoc. Prof. PhD. Marcel-Adrian Şerban				
2.3 Seminar coo	ordi	nator		Assoc. Prof. PhD. Marcel-Adrian Şerban			
2.4. Year of	3	2.5	5	2.6. Type of	Ε	2.7 Type of	Compulsory
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1
				seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6	14
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course suppor	rt, bił	oliography, course notes	5		30
Additional documentation (in libraries, on electronic platforms, field documentation)					
Preparation for seminars/labs, homework, papers, portfolios and essays					
Tutorship					
Evaluations					
Other activities:					-
3.7 Total individual study hours158					
3.8 Total hours per semester 200					

4. Prerequisites (if necessary)

3.9 Number of ECTS credits

1 1	, ,
4.1. curriculum	
4.2. competencies	

8

5. Conditions (if necessary)

5.1. for the course	basic knowledge in dynamical systems
5.2. for the seminar /lab	• Laboratory with computers; basic knowledge in MAPLE
activities	

6. Specific competencies acquired

1	
Professional competencies	 Knowledge, understanding and use of basic concepts of discrete and continuous dynamical systems Ability to work independently and/or in a team in order to solve problems in defined professional contexts. Good programming skills in MAPLE
Transversal competencies	 Ability to apply mathematical tools to different real life problems Ability to model phenomena using dynamical systems Improved modeling abilities: mathematical modelling, model analysis, numerical simulations

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Be able to describe real world phenomena in mathematical language Improved modeling abilities: mathematical modelling, model analysis, numerical simulations
7.2 Specific objective of the discipline	 Acquire knowledge about discrete and continuous dynamical systems Apply discrete and continuous dynamical systems in mathematical modelling of real world phenomena Understand and work with mathematical models

8. Content

8.1 Course		Teaching methods	Remarks
1.	Mathematical Models. Modelling Change with	Exposure: description,	
	Difference Equations	explanation, examples,	
		discussion of case studies	
2.	Difference Equations. Equilibrium Points.	Exposure: description,	
	Periodic Points	explanation, examples,	
		discussion of case studies	
3.	Solving Difference Equations with MAPLE	Exposure: description,	
		explanation, examples,	
		debate, dialogue	
4.	Stability of the Equilibrium Points.	Exposure: description,	
	Mathematical Models Given by Difference	explanation, examples,	
	Equations	discussion of case studies	
5.	Solving Differential Equations with MAPLE	Exposure: description,	
		explanation, examples,	
		proofs	
6.	Approximating Solutions of Differential	Exposure: description,	
	Equations	explanation, examples,	
		proofs, debate, dialogue	
7.	Modelling with First Order Differential	Exposure: description,	
	Equations	explanation, examples,	
		discussion of case studies	
8.	Mathematical Models in One Population	Exposure: description,	
	Dynamics	explanation, examples	
9.	Mathematical Models for Interacting	Exposure: description,	
	Populations	explanation, examples	

	discussion of case studies	
10. Modelling with Second Order Differential	Exposure: description,	
Equations	explanation, examples,	
	debate	
11. Vertical Stabilization of a Rocket on a	Exposure: description,	
Movable Platform	explanation, discussion	
	of case studies	
12. A Suspension Bridge Model	Exposure: description,	
	explanation, discussion	
	of case studies	
13. Chaos Theory: Chaotic Discrete-Time Models,	Exposure: description,	
the Discrete Logistical Model	explanation, examples,	
	discussion of case studies	
14. Chaos Theory: Chaotic Continuous-Time	Exposure: description,	
Models, the Loretnz Model	examples, discussion of	
	case studies, live demo	

Bibliography

- 1. I.A.Rus, C. Iancu, Mathematical modeling, Transilvania Press, 2000.
- 2. F.R. Giordano, M.D. Weir, W.P. Fox, A first course in mathematical modeling, Brooks/Coole, 2003.
- 3. D.K. Arrowsmith, Dynamical systems, Differential equations, maps and chaotic behaviour, Chapmann and Hall, 1992.
- 4. Lynch S. Dynamical systems with applications using MAPLE, Birkhauser, 2001.
- 5. Ronald W. Shonkwiler, Mathematical Biology. An Introduction with Maple and Matlab, Springer, 2009.
- 6. J.D. Murray, Mathematical biology, Springer, 2001.

8.2 Seminar	Teaching methods	Remarks
1. Solving difference equations with MAPLE	Explation, dialogue, case	
	studies	
2. Stability of the Equilibrium Points for	Dialogue, debate, case	
Diference Equations. Case Studies with	studies, examples, proofs	
MAPLE		
3. Mathematical Models Given by Difference	Dialogue, debate, case	
Equations	studies, examples, proofs	
4. Solving Differential Equations with MAPLE	Dialogue, debate, case	
	studies, examples	
5. Modelling with First Order Differential	Dialogue, debate, case	
Equations	studies, examples	
6. Modelling with Second Order Differential	Dialogue, debate, case	
Equations	studies, examples	
7. Mathematical Models for Interacting	Dialogue, debate, case	
Populations	studies, examples	

Bibliography

1. F.R. Giordano, M.D. Weir, W.P. Fox, A first course in mathematical modeling, Brooks/Coole, 2003.

2. D.K. Arrowsmith, Dynamical systems, Differential equations, maps and chaotic behaviour, Chapmann and Hall, 1992.

3. Lynch S. Dynamical systems with applications using MAPLE, Birkhauser, 2001.

4. Ronald W. Shonkwiler, Mathematical Biology. An Introduction with Maple and Matlab, Springer, 2009.

8.3 Laboratory	Teaching methods	Remarks

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course respects the IEEE and ACM Curricula Recommendations for Computer Science studies;
- The course exists in the studying program of all major universities in Romania and abroad;

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the			
			grade (%)			
10.4 Course	- know the basic principle	Written exam	70%			
	of the domain;					
	- apply the course					
	concepts					
	- problem solving					
10.5 Seminar/lab activities	- be able to implement	-Practical examination	30%			
	course concepts	-continuous observations				
	- apply techniques for					
	different classes of					
	mathematical models					
10.6 Minimum performance standards						
At least grade 5 (from a scale of 1 to 10) at both written exam and seminary work.						

Date Signature of course coordinator

30.04.2016 Assoc. Prof. PhD. Marcel-Adrian ŞERBAN

Date of approval

.....

Signature of seminar coordinator Assoc. Prof. PhD. Marcel-Adrian ŞERBAN Signature of the head of department

Prof. PhD. Octavian AGRATINI