SYLLABUS

i internation regarding the programme					
1.1 Higher education institution	Babes Bolyai University				
1.2 Faculty	Faculty of Mathematics and Computer Science				
1.3 Department	Informatics				
1.4 Field of study	Informatics				
1.5 Study cycle	Master				
1.6 Study programme /	Inteligență Computațională Aplicată				
Qualification					

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the discipline (en) Computational Meta and Hyper Heuristics							
(ro)			Meta-euristici și hiper-euristici computaționale			nale	
2.2 Course coordin	ator		Prof. Univ. Dr. D. Dumitrescu				
2.3 Seminar coordinator		Pr	Prof. Univ. Dr. D. Dumitrescu				
2.4. Year of study	1	2.5	1 2.6. Type of E 2.7 Type of DF				
		Semester		evaluation		discipline	
2.8 Code of the discipline MME8089							

3. Total estimated time (hours/semester of didactic activities)

<pre>x</pre>			/			
3.1 Hours per week	4	Of which:	3.2	2	3.3	2
		course			seminar/laboratory	
3.4 Total hours in the curriculum	56	Of which:	3.5	28	3.6	28
		course			seminar/laboratory	
Time allotment:					hours	
Learning using manual, course support, bibliography, course notes						28
Additional documentation (in libraries, on electronic platforms, field documentation)						14
Preparation for seminars/labs, homework, papers, portfolios and essays					28	
Tutorship					7	
Evaluations					20	
Other activities:						
3.7 Total individual study hours		70				
A O T = 11		1				

3.8 Total hours per semester	153
3.9 Number of ECTS credits	7

4. Prerequisites (if necessary)

4.1. curriculum	Graph Theory, Data Structures and Algorithms, Basic
	knowledge of AI methods and techniques
4.2. competencies	• Medium proficiency in an advanced programming language
	(object oriented)

5. Conditions (if necessary)

5.1. for the course	•
5.2. for the seminar /lab	•
activities	

6. Specific competencies acquired

Profe ssion al comp etenc ies	 An introduction to automatic parameter settings for different AI techniques. Acquire the basic notion, techniques and methods for selecting and combining heuristics for AI techniques.
Tran svers al comp etenc ies	 Ability to apply high level AI techniques to different real life problems Ability to model problems in an interdisciplinary field

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Ability to understand and use the basic heuristic selection in AI algorithms. Ability to model real life problems as AI problems and find optimal hyper - heuristics in order to determine solutions for them.
7.2 Specific objective of the discipline	• Acquire advance knowledge about the main classes of soft computing algorithms and knowledge base reasoning.

8. Content

o. Content		
8.1 Course	Teaching methods	Remarks
1. Introduction	Exposure: description,	
	explanation, examples,	
	discussion of case studies	
2. Evolutionary Algorithms	Exposure: description,	
	explanation, examples,	
	discussion of case studies	
3. Genetic Algorithms	Exposure: description,	
	explanation, examples,	
	discussion of case studies	
4. Evolution strategies	Exposure: description,	
	explanation, examples,	
	discussion of case studies	
5. Evolutionary programming	Exposure: description,	
	explanation, examples,	
	discussion of case studies	
6. Genetic programming	Exposure: description,	
	explanation, examples,	
	discussion of case studies	
7. Parameter testing/control genetic walkers	Exposure: description,	
	explanation, examples,	
	discussion of case studies	

8. Memetic algorithms	Exposure: description,
	explanation, examples,
	discussion of case studies
9. Other bio – inspired methods	Exposure: description,
*	explanation, examples,
	discussion of case studies
10. Meta - heuristics	Exposure: description,
	explanation, examples,
	discussion of case studies
11. Automatic parameter settings	Exposure: description,
	explanation, examples,
	discussion of case studies
12. Hyper - heuristics	Exposure: description,
	explanation, examples,
	discussion of case studies
13. Dynamic optimisation	Exposure: description,
	explanation, examples,
	discussion of case studies
14. Game theory and EC	Exposure: description,
	explanation, examples,
	discussion of case studies

Bibliography

1. GROSAN, C., Abraham, A., *Intelligent Systems: a modern approach*, Springer Verlag GERMANY, 2011.

2. PATRIDGE, D., *Artificial Intelligence. Applications in the future of software engineering*, Ellis Harwood Series in A.I., John Wiley & Sons, New York 1986.

3. RICH, E. Artificial Intelligence, Mc.Graw Hill, 1989.

4. WINSTON, P., *Inteligenta artificiala*, Ed.Tehnica, 1980. GOLDBERG, D. E., Genetic Algorithm. AddisonWesley, Reading, 1989.

5. Dumitrescu, D., et al., Evolutionary computation, CRC press, 2000.

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Optimization - large scale	Explanation, dialogue, case studies, problem solving	The laboratory is structured as 2 hours classes every second week
2. Multi-objective optimization	Explanation, dialogue, case studies, problem solving	
3. Multimodal optimization	Explanation, dialogue, case studies, problem solving	
4. Dynamic optimization	Explanation, dialogue, case studies, problem solving	
5. Combinatorial optimization	Explanation, dialogue, case studies, problem solving	
6. Complex networks	Explanation, dialogue, case studies, problem solving	
7. Game theory. Evolutionary art	Explanation, dialogue, case studies, problem solving	
Bibliography	1	

1. GROSAN, C., Abraham, A., *Intelligent Systems: a modern approach*, Springer Verlag GERMANY, 2011.

2. PATRIDGE, D., *Artificial Intelligence. Applications in the future of software engineering*, Ellis Harwood Series in A.I., John Wiley & Sons, New York 1986.

3. RICH, E. Artificial Intelligence, Mc.Graw Hill, 1989.

4. WINSTON, P., *Inteligenta artificiala*, Ed.Tehnica, 1980. GOLDBERG, D. E., Genetic Algorithm. AddisonWesley, Reading, 1989.

5. Dumitrescu, D., et al., Evolutionary computation, CRC press, 2000.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

• The course follows the scheme and structure used by the most important universities in USA and Europe

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)			
10.4 Course	Know the basic principles; apply the course concepts; problem solving	Written exam (there will be two written exams)	60,00%			
10.5 Seminar/lab activitiesBe able to implement the algorithms described in the course and discussed during the seminars		- individual projects	40,00%			
10 6 Minimum norforman	aa atan darda					
10.6 Minimum performance standards						
➤ At least grade 5 (from a scale of 1 to 10) at both written exams and project work						

Date	Signature of course coordinator	Signature of seminar coordinator
	Prof. D. Dumitrescu	Prof. D. Dumitrescu
Date of approval	Signature of the head of department	

.....

.....