1. Information regarding the programme

1.1 Higher education	Babes-Bolyai University
institution 1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme / Qualification	High Performance Computing

2. Information regarding the discipline

2.1 Name of the discipline Knowledge Discovery in Wide Area Networks							
2.2 Course coordinator Assist. Prof. Christian Sacarea, PhD							
2.3 Seminar coordinator				Assist. Prof. Christian Sacarea, PhD			
2.4. Year of	1	2.5	4	2.6. Type of E 2.7 Type of compulsory			
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

,			,		
3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1
				seminar/laboratory	
3.4 Total hours in the curriculum	4	Of which: 3.5	28	3.6	14
	2	course		seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes			30		
Additional documentation (in libraries, on electronic platforms, field documentation)				30	
Preparation for seminars/labs, homework, papers, portfolios and essays				30	
Tutorship				20	
Evaluations			23		
Other activities:					
3.7 Total individual study hours		133			
2.0 Total haura par compater		475			

3.8 Total hours per semester	175
3.9 Number of ECTS credits	7

4. Prerequisites (if necessary)

4.1. curriculum	•
4.2. competencies	 Good skills in understanding, analyzing, modelling real life problems Programming skills Social and communication skills

5. Conditions (if necessary)

5.1. for the course	•

5.2. for the seminar /lab	•
activities	

6. Specific competencies acquired

ici	to offer the main conceptual and computational tools of Artificial Intelligence
l oeten es	develop skills for coping with real world problems
comp	develop research abilities
ie –	Ability to analyze a large amount of information
Transversal competencie s	Ability to communicate with non-experts and to find altogether solutions for real-life problems

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 To introduce the student to a broad range of information representation models drawn from the fields of information science, computer science, semiotics, philosophy, cognitive psychology, and artificial intelligence. To introduce a formal method of qualitative data analysis. To provide practical experience with basic data analysis techniques, such as selection, grouping and scaling of features.
7.2 Specific objective of the discipline	 To develop the student's ability to understand the problems involved in the formalization of <i>informal</i> data. To teach practical skills of using the computer software DIAGRAM, ANACONDA, and TOSCANA. To provide practical experience with techniques of structuring graphical representations. To provide insights into the formal structure of classification systems.

8. Content

8.1 Course	Teaching methods	Remarks
1. Introduction: Data, Information, and Knowledge. What is data? Information? Knowledge? How are they represented? Information access and information usage, The interdisciplinarity of information science.	Lectures, presentations, conversations	
 2. Introduction in Knowledge Management. Acquisition, representation and computing of knowledge. Knowledge bases for constructions. 	Lectures, presentations, conversations	
 Formal Concept Analysis (FCA). The pragmatic approach. 	Lectures, presentations, conversations	
4. FCA. Context, concept, diagrams	Lectures, presentations, conversations	

5. Order relations	Lectures, presentations, conversations
6. Many-valued contexts. Scaling	Lectures, presentations, conversations
 Conceptual hierarchies. Diagram. How to draw a nice diagram ? 	Lectures, presentations, conversations
8. Implications.	Lectures, presentations, conversations
9. Association rules.	Lectures, presentations, conversations
10.Conceptual Knowledge Processing.	Lectures, presentations, conversations
11.Factor analysis	Lectures, presentations, conversations
12. Ordinal factor analysis	Lectures, presentations, conversations
13.Knowledge Management Systems	Lectures, presentations, conversations
14. Conceptual Knowledge Acquisition	Lectures, presentations, conversations

Bibliography

- 1. Bernhard Ganter, Rudolf Wille, Formal Concept Analysis, Springer Verlag, 2000
- 2. Aldo de Moord, Wilfried Lex, Bernhard Ganter, eds., Conceptual Structures for Knowledge Creation and Communication, Springer LNAI 2746, 2003.
- 3. Bernhard Ganter, Aldo de Moord, eds., Using Conceptual Structures, Shaker Verlag, 2003.
- 4. Frank Vogt, Formal Concept Analysis with C++, Springer, 1996

Rokia Missaoui, Jürg Schmid, eds., Formal Concept Analysis, Springer LNAI 3874, 2006.

8.2 Seminar / laboratory	Teaching methods	Remarks
 Working with small data sets 	projects, exercises, individual	
	study, homework assignments.	
2. Diagram drawing. What is a nice diagram?	projects, exercises, individual	
	study, homework assignments.	
3. ConExp, Toscana Suite	projects, exercises, individual	
	study, homework assignments.	
4. Nested line diagrams	projects, exercises, individual	
	study, homework assignments.	
5. My first knowledge management system	projects, exercises, individual	
	study, homework assignments.	
6. Mining associations	projects, exercises, individual	
	study, homework assignments.	
7. Attribute exploration	projects, exercises, individual	
	study, homework assignments.	
Dibliggerender		

Bibliography

- 1. B. Ganter, G. Stumme, R. Wille, eds. Formal Concept Analysis: foundations and applications, Springer LNAI 3626, 2005
- 2. P. Becker, J. Hereth Correia: The ToscanaJ Suite for implementing conceptual information systems, in 1, pp. 324 348

3. C. Carpineto, G. Romano, Concept data analysis: theory and applications, Wiley, 2004.

4. C. Carpineto, G. Romano, Using concept lattices for text retrieval and mining, in 1, pp. 161-179

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

• Knowledge discovery is an interdisciplinary area which is broadly needed by all actors from science, economy, industry or research.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	Fundamental principles	Project	50%
	Applying the methods		
	for problem solving		
10.5 Seminar/lab	Implementing concepts		50%
activities	and algorithms		
	Innovation, initiative,		
	team work		
10.6 Minimum performance standards			
At least grade 5 (from 1 to 10).			

Date

Signature of course coordinator Signature of seminar

coordinator

.....

Date of approval

Signature of the head of department

.....