SYLLABUS

1.1 Higher education	Babeş-Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Master
1.6 Study programme /	Master of Advanced Mathematics
Qualification	

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the discipline <i>Techniques of function approximation</i>							
2.2 Course coordinatorProfessor Agratini Octavian, PhD							
2.3 Seminar coordinator				Professor Agratini Octavian, PhD			
2.4. Year of	1	2.5	2	2.6. Type of	Ε	2.7 Type of	Compulsory
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1
				seminar/ laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6	14
				seminar/ laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					40
Additional documentation (in libraries, on electronic platforms, field documentation)					44
Preparation for seminars/labs, homework, papers, portfolios and essays					50
Tutorship					10
Evaluations				14	
Other activities:					
3.7 Total individual study hours		158			•

5.7 Total marviadal study nouis	150
3.8 Total hours per semester	200
3.9 Number of ECTS credits	8

4. Prerequisites (if necessary)

4.1. curriculum	Mathematical Analysis			
	Special Topics in Numerical Analysis			
4.2. competencies	Comparative assessment and efficient use of various methods			
	of demonstration			

5. Conditions (if necessary)

5.1. for the course	•
5.2. for the seminar /lab	•

6. Specific competencies acquired

-	ie competencies acquirea
Professional competencies	 The ability to understand and manipulate concepts, results and theories advanced in mathematics Ability to use the knowledge gained and complementary in achieving a PhD in Mathematics
Transversal competencies	• Ability to self-improvement and to train continuously

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• Assimilation of modern techniques of approximation of functions / signals
7.2 Specific objective of the discipline	 Deepening different construction methods of linear positive operators Acquiring knowledge of Fourier analysis and wavelets analysis Knowledge of the outstanding classes of approximation operators of discrete and continuous type

8. Content

8.1 Course	Teaching methods	Remarks
1. Positive linear operators: definitions, properties.	Interactive exposure:	
Bohman-Korovkin theorems	explanation, conversation	
2. Moduli of smoothness. Properties	Interactive exposure:	
	explanation, conversation	
3. Quantitative estimates. The error of approximation	Interactive exposure:	
	explanation, conversation	
4. K – functionals. Properties	Interactive exposure:	
	explanation, conversation	
5. Integral generalizations of discrete type	Interactive exposure:	
approximation processes. Kantorovich and	explanation, conversation	
Durrmeyer operators		
6. Summation methods: Cesaro, Euler, Jakimovski	Interactive exposure:	
	explanation, conversation	
7. Random approximation schemes. Feller type	Interactive exposure:	
operators	explanation, conversation	
8. Approximation in periodical spaces	Interactive exposure:	
	explanation, conversation	
9. Windowed Fourier transforms. Gabor formulas	Interactive exposure:	
	explanation, conversation	
10. Wavelets. Franklin and Stromberg direction	Interactive exposure:	
	explanation, conversation	
11. Multiresolution analysis	Interactive exposure:	
	explanation, conversation	
12. On mother wavelet and father wavelet	Interactive exposure:	
	explanation, conversation	
13. Wavelets decompositions and reconstructions	Interactive exposure:	
	explanation, conversation	
14. Integral wavelets transform	Interactive exposure:	

	explanation, conversation	
Bibliography		
[1] Agratini, O., Blaga, P., Coman, Gh., <i>Lectures on Wavelet</i> Cărții de Știință, Cluj-Napoca, 2005.	ts, Numerical Methods and Sta	ttistics, Casa
[2] Francesco Altomare, Michele Campiti, <i>Korovkin – type A</i> Studies in Mathematics, Vol. 17, Walter de		
[3] Lokenath Debnath, Wavelet Transforms & Their Applica	tions, Birkhauser, Boston, 200	2.
8.2 Seminar / laboratory	Teaching methods	Remarks
1. Spaces of functions and their characteristic properties. Inequalities in normed spaces	Exercise, dialogue, individual study	
2. Best approximation to a given function	Exercise, dialogue, individual study	
3. Bernstein polynomials. Properties	Exercise, dialogue, individual study	
 Discrete type linear positive operators: Szasz, Baskakov 	Exercise, dialogue, individual study	
5. Convolution product. Properties	Exercise, dialogue, individual study	
6. Convolution operators. Approximation properties	Exercise, dialogue, individual study	
7. Reserved for a written paper (quiz)	Exercise, dialogue, individual study	
8. Stancu operators associated with the Markov-Polya urn scheme	Exercise, dialogue, individual study	
9. Fourier transforms. Problems on the theme of the same week lecture	Exercise, dialogue, individual study	

Exercise, dialogue, individual study

Exercise, dialogue, individual study

Exercise, dialogue, individual study

Exercise, dialogue, individual study Exercise, dialogue,

individual study

Bibliography

radius

[4] Agratini, O., Aproximare prin operatori liniari, Presa Universitară Clujeană, Cluj-Napoca, 2000.

[5] Agratini, O., Chiorean, I., Coman, Gh., Trîmbițaș, R., *Analiză numerică și teoria aproximării*, Vol. III, Presa Universitară Clujeană, Cluj-Napoca, 2002.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

• This program covers the necessary basic knowledge in this area

10. Window functions - calculating the center and

11. Example of orthogonal wavelet – Haar function

14. Linear operators generated by a scaling function

12. B – spline functions. Properties

13. Examples of mother - wavelets

• Software companies consider important in that it provides a solid theoretical foundation in skills development programmer.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)		
10.4 Course		Written exam	65%		
10.5 Seminar/ lab activities		Quiz Continous observations	25% 10%		
10.6 Minimum performance standards					
At least grade 5 (from a scale of 1 to 10) at written exam					

Date

Signature of course coordinator

Signature of seminar coordinator

January 10th, 2015

Octavian Agratini

Octavian Agratini

Date of approval

January 15th, 2015

Signature of the head of department

Octavian Agratini