SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babes-Bolyai University Cluj-Napoca
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Master
1.6 Study programme /	Advanced Mathematics
Qualification	

2. Information regarding the discipline

2.1 Name of the	dis	scipline	Nonlinear Applied Analysis				
2.2 Course coordinator Prof.dr.				Prof.dr. Petrusel Adria	an		
2.3 Seminar coordinator				Prof.dr. Petrusel Adria	an		
2.4. Year of	I	2.5	2	2.6. Type of	C	2.7 Type of	compulsory
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1
				seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6	14
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					32
Additional documentation (in libraries, on electronic platforms, field documentation)					23
Preparation for seminars/labs, homework, papers, portfolios and essays					32
Tutorship					21
Evaluations					8
Other activities:					17
3.7 Total individual study hours		133			•

3.7 Total individual study hours	133
3.8 Total hours per semester	175
3.9 Number of ECTS credits	7

4. Prerequisites (if necessary)

4.1. curriculum	 Differential Equations MLR0009
4.2. competencies	 Mathematical Analysis (I-III), Functional Analysis

5. Conditions (if necessary)

5.1. for the course	 videoprojector
5.2. for the seminar /lab	• videoprojector
activities	

6. Specific competencies acquired

Professional competencies '	 Ability to understand and manipulate concepts, results and advanced mathematical theories. Ability to model and analyze from the mathematical point of view real processes from other sciences, economics, and engineering. Ability to use the scientific language and to write scientific reports and papers. Acquiring specific methods of nonlinear analysis theory (mainly from fixed point theory) and its applications
Transversal competencies	 Ability to inform themselves, to work independently or in a team in order to realize studies and to solve complex problems. Ability for continuous self-perfecting and study. Ability to use advanced and complementary knowledge in order to obtain a PhD in Pure Mathematics and Applied Mathematics.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 to present the basic concepts and results in the metric and topological fixed point theory for singlevalued operators and its applications to differential and integral equations
7.2 Specific objective of the discipline	 basic concepts and tools of metric and normed spaces main concepts and results of metric and topological fixed point theory main concepts and results in the (weakly) Picard operator theory applications of the fixed point theory to nonlinear functional analysis, differential and integarl equations theory

8. Content

8.1 Course	Teaching methods	Remarks
1. Metric spaces, normed spaces, complete metric	Expositions: description,	
spaces, Banach spaces, examples	explanation, class lectures,	
	dialog-based lectures, lectures	
	with demonstrations,	
	introductive lectures,	
	synthesis lectures.	
	Conversations: debate, dialog,	
	introductive conversations,	
	conversations for knowledge	
	consolidation, conversations	
	to systematize and synthesize	
	knowledge	
	Use of problems: use of	
	problem questions, problems	
	and problem situations.	
2. Contraction principle and basic applications	the same as before	
3. Generalizations of the Contraction Principle	the same as before	
(Kannan, Reich-Rus, Ciric)		
4. Generalizations of the Contraction Principle (local	the same as before	

fixed point theorems, Maia's theorem)	
5. Graphic Contraction Principle and Caristi-Browder	the same as before
fixed point theorems	
6. Picard and weakly Picard operator theory (WPO).	the same as before
Basic notions and examples	
7. Characterization theorem for WPO. Abstract	the same as before
Gronwall lemma and comparison theorems	
8. Applications of WPO theory for integral and	the same as before
differential equations	
9. KKM Lemma and consequences (I)	the same as before
10. KKM Lemma and consequences (II)	the same as before
11. Ky Fan approximation lemma and applications	the same as before
12-14 Schauder's theorem and applications to integral	the same as before
and differential equations	

Bibliography

- 1. R.P. Agarwal, D. O'Regan, An Introduction to Ordinary Differential Equations, Springer, 2008.
- 2. I.A. Rus, Principii si aplicatii ale teoriei punctului fix, Editura Dacia, 1979.
- 3. I.A. Rus, A. Petrusel, G. Petrusel, Fixed Point Theory, Presa Universitara Clujeana, 2008.
- 4. A. Granas, J. Dugundji, Fixed Point Theory, Springer, 2003.
- 5. A. Petrusel, Gh. Mot, G. Petrusel, Topics in Nonlinear Analysis and Applications to Mathematical Economics, House of the Book of Science, Cluj-Napoca, 2007.

8.2 Seminar / laboratory	Teaching methods	Remarks
Examples and exercises concerning metrics and norms in different spaces. Equivalent norms;	Conversations: debate, dialog, introductive conversations, conversations for knowledge consolidation, conversations to systematize and synthesize knowledge Use of problems: use of problem questions, problems and problem situations	
Examples and exercises concerning Contraction Principle and its applications (I)	the same as before	
3. Examples and exercises concerning Contraction Principle and its applications (II)	the same as before	
4. Examples and exercises concerning some generalizations of the Contraction Principle (I)	the same as before	
5. Examples and exercises concerning some generalizations of the Contraction Principle (II)	the same as before	
6. Examples and exercises concerning Picard and weakly Picard operator theory	the same as before	
7. Examples and exercises concerning some applications to integral and differential equations via WPO theory (I)	the same as before	
8. Examples and exercises concerning some applications to integral and differential equations via WPO theory (II)	the same as before	

9. Examples and exercises concerning some	the same as before
applications to integral and differential equations	
via WPO theory (III)	
10. Examples and exercises concerning KKM	the same as before
operators	
11. Examples and exercises concerning Schauder's	the same as before
theorems	
12. Examples and exercises concerning some	the same as before
applications of Schauder's theorem to integral and	
differential equations	

Bibliography

- 1. R.P. Agarwal, D. O'Regan, An Introduction to Ordinary Differential Equations, Springer, 2008.
- 2. I.A. Rus, Ecuatii diferentiale, ecuatii integrale si sisteme dinamice, Transilvania Press, 1996
- 3. A. Petruşel, Operatorial, Inclusions, House of the Book of Science Cluj-Napoca, 2003
- 4. A. Granas, J. Dugundji, Fixed Point Theory, Springer, 2003.
- 5. I.A. Rus, A. Petrusel, G. Petrusel, Fixed Point Theory, Presa Universitara Clujeana, 2008.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The syllabus of this course is focused on the multivalued operator theory, as a basis for a good research activity through the Doctoral School in Mathematics.

Moreover, the course propose the following three important directions:

- 1. the understanding of the main concepts in nonlinear analysis theory in metric and normed spaces;
- 2. to apply fixed point theory for singlevalued operators to integral and differential equations theory;
- 3. applications of the Picard and WPO theory to integral and differential equations theory;

The content of this discipline is in accordance with the curricula of the most important universities in Romania and abroad, where nonlinear analysis plays an essential role. This discipline is useful in preparing future teachers and researchers in pure and applied mathematics, as well as those who use mathematical models and advanced methods of study in other areas.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	Knowledge of concepts and basic results	Middle term written test	25%
	Ability to justify by proofs theoretical results	Final Written Test	50%
10.5 Seminar/lab activities	Ability to apply concepts and results acquired in the course in nonlinear analysis theory	Written and Oral Report	25%
	There are valid the official rules of the faculty concerning the attendance of students to teaching activities.		

10.6 Minimum performance standards

Successful passing of the exam is conditioned by the final grade that has to be at least 5.

All university official rules with respect to students attendance of academic activities, as well as to cheating and plagiarism, are valid and enforced.

Date Signature of course coordinator Signature of seminar coordinator

April 28, 2015 Professor Adrian Petrusel, Ph.D.

Date of approval Signature of the head of department

May 1st, 2015 Professor Octavian Agratini, Ph.D.