SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş-Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Master
1.6 Study programme /	Master of Advanced Mathematics
Qualification	

2. Information regarding the discipline

2.1 Name of the	e dis	scipline	Qualitative theory of ordinary differential equations				
2.2 Course coor	din	ator		Conf. dr. Adriana Bı	uică		
2.3 Seminar coordinator				Conf. dr. Adriana Buică			
2.4. Year of	1	2.5	1	2.6. Type of	E	2.7 Type of	C
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1
				seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6	14
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					28
Additional documentation (in libraries, on electronic platforms, field documentation)					28
Preparation for seminars/labs, homework, papers, portfolios and essays					35
Tutorship					28
Evaluations				4	
Other activities:					-
3.7 Total individual study hours 133					•

3.7 Total individual study hours	133
3.8 Total hours per semester	175
3.9 Number of ECTS credits	

4. Prerequisites (if necessary)

4.1. curriculum	 Mathematical Analysis; Differential Equations
4.2. competencies	 Logical thinking, as well mathematical notions and properties
	from the above mentioned fields (at introductory level).

5. Conditions (if necessary)

5.1. for the course	•
5.2. for the seminar /lab	•
activities	

6. Specific competencies acquired

o. Specif	te competencies acquired
Professional competencies	Ability to understand and manipulate advanced concepts, results and theories in the fields of mathematics.
Transversal competencies	 Ability to inform themselves, to work independently or in a team in order to realize studies and to solve complex problems. Ability for continuous self-perfecting and study.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• To be familiar with the important problems in the qualitative theory of differential equations: dependence of solutions on data and parameters, approximation, stability, first integrals.
7.2 Specific objective of the discipline	 To be able to prove the main results To be able to apply the main results in examples and physical models To have an intuition on the variety of problems that can appear in studying the differential equations

8. Content

8.1 Course	Teaching methods	Remarks
1. The Cauchy problem. Local existence. Peano	Interactive exposure	
theorem. Uniqueness in the locally Lipschitz	Explanation	
case and, respectively, dissipative case.	Conversation	
	Demonstration	
2. The Cauchy problem. Saturated solutions.	Interactive exposure	
Global solutions. Regularity of solutions.	Explanation	
	Conversation	
	Demonstration	
3. Continuous dependence on data and	Interactive exposure	
parameters.	Explanation	
	Conversation	
	Demonstration	
4. Differentiability with respect to data and	Interactive exposure	
parameters.	Explanation	
	Conversation	
	Demonstration	
5. Approximation: power series method and the	Interactive exposure	
successive approximations method.	Explanation	
	Conversation	
	Demonstration	
6. Approximation: the method of polygonal lines	Interactive exposure	
(Euler).	Explanation	
	Conversation	
	Demonstration	
7. Stability of linear systems with constant	Interactive exposure	

coefficients.	Explanation
	Conversation
	Demonstration
8. Stability of equilibria of nonlinear systems: the	Interactive exposure
linearization method.	Explanation
	Conversation
	Demonstration
9. Stability of equilibria of nonlinear systems: the	Interactive exposure
Liapunov functions method.	Explanation
	Conversation
	Demonstration
10. Stability of dissipative systems.	Interactive exposure
	Explanation
	Conversation
	Demonstration
11. Invariant manifolds.	Interactive exposure
	Explanation
	Conversation
	Demonstration
12. First integrals for differential systems.	Interactive exposure
	Explanation
	Conversation
	Demonstration
13. First order partial differential equations.	Interactive exposure
	Explanation
	Conversation
	Demonstration
14. The Cauchy problem for quasi-linear first	Interactive exposure
order partial differential equations.	Explanation
1	Conversation
	Demonstration
Dibli	

Bibliography

- 1. C. Chicone, Ordinary differential equations with applications, Springer, 2006.
- 2. J.K. Hale, Ordinary differential equations, Krieger, 1980.
- 3. M.W. Hirsch, S. Smale, R.L. Devaney, Differential equations, dynamical systems, and an introduction to chaos, Elsevier, 2013.

4. I.I. Vrabie, Differential equations, World Scientific, 2004.

Seminar / Jaboratory Teaching methods Re

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Various problems and exercises on the theme	Explanation	
of the same week lecture.	Conversation	
2. Various problems and exercises on the theme	Explanation	
of the same week lecture.	Conversation	
3. Various problems and exercises on the theme	Explanation	
of the same week lecture.	Conversation	
4. Various problems and exercises on the theme	Explanation	
of the same week lecture.	Conversation	
5. Various problems and exercises on the theme	Explanation	
of the same week lecture.	Conversation	
6. Various problems and exercises on the theme	Explanation	
of the same week lecture.	Conversation	
7. Various problems and exercises on the theme	Explanation	
of the same week lecture.	Conversation	
8. Various problems and exercises on the theme	Explanation	
of the same week lecture.	Conversation	
9. Various problems and exercises on the theme	Explanation	

of the same week lecture.	Conversation
10. Various problems and exercises on the theme	Explanation
of the same week lecture.	Conversation
11. Various problems and exercises on the theme	Explanation
of the same week lecture.	Conversation
12. Various problems and exercises on the theme	Explanation
of the same week lecture.	Conversation
13. Various problems and exercises on the theme	Explanation
of the same week lecture.	Conversation
14. Various problems and exercises on the theme	Explanation
of the same week lecture.	Conversation

Bibliography

- 1. C. Chicone, Ordinary differential equations with applications, Springer, 2006.
- 2. J.K. Hale, Ordinary differential equations, Krieger, 1980.
- 3. M.W. Hirsch, S. Smale, R.L. Devaney, Differential equations, dynamical systems, and an introduction to chaos, Elsevier, 2013.
- 4. I.I. Vrabie, Differential equations, World Scientific, 2004.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The content of this discipline is synchronized with the curriculum of most of the important universities from our country and from abroad where the applied mathematics plays an important role.

10. Evaluation

To know the notions and their properties by examples or counterexamples. To be able to prove and use the main theoretical results. To develop a specific subject by reading the bibliography. Exam 60% Exam 60% Report 20%	in the
subject by reading the	
olollography.	
10.5 Seminar/lab activities Solving problems skills Evaluation of the homeworks 20%	
Active participation in the classroom	
10.6 Minimum performance standards The minimum passing grade is 5.	

Date Signature of course coordinator Signature of seminar coordinator

02-05-2015 Conf. dr. Adriana Buică Conf. dr. Adriana Buică

Date of approval

Signature of the head of department

04-05-2015

Prof. dr. Octavian Agratini