SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş-Bolyai University Cluj-Napoca
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Master
1.6 Study programme /	Advanced Mathematics
Qualification	

2. Information regarding the discipline

2.1 Name of the	dis	•	Mathematical methods in fluid mechanics (Metode matematice în mecanica fluidelor)					
2.2 Course coor	2.2 Course coordinator Professor Mirela KOHR							
2.3 Seminar coordinator				Professor Mirela KOHR				
2.4. Year of	1	2.5	1	2.6. Type of	E	2.7 Type of	DF	
study		Semester		evaluation		discipline		

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1 sem
				seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6	14
				seminar/laboratory	
Time allotment:					
Learning using manual, course support, bibliography, course notes					
Additional documentation (in libraries, on electronic platforms, field documentation)					
Preparation for seminars/labs, homework, papers, portfolios and essays					46
Tutorship					11
Evaluations					9
Other activities:					-

3.7 Total individual study hours	158
3.8 Total hours per semester	200
3.9 Number of ECTS credits	8

4. Prerequisites (if necessary)

4.1. curriculum	Theoretical Mechanics; Partial Differential Equations; Real Functions; Functional Analysis
4.2. competencies	There are useful logical thinking and mathematical notions and results from the above mentioned fields

5. Conditions (if necessary)

5.1. for the course	Classroom with blackboard/video projector
5.2. for the seminar /lab	Classroom with blackboard/video projector
activities	

6. Specific competencies acquired

_	•	Ability to understand and manipulate concepts, individual results and advanced mathematical
es es		theories.
Professional competencies	•	Ability to model and analyze from the mathematical point of view real processes from other sciences, economics, and engineering. Ability to use scientific language and to write scientific reports and papers.
	•	Ability to inform themselves, to work independently or in a team in order to carry out studies
		and to solve complex problems.
Transversal competencies	•	Ability to use advanced and complementary knowledge in order to obtain a PhD in Pure Mathematics, Applied Mathematics, or in other fields that use mathematical models.
Tran	•	Ability for continuous self-perfecting and study.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Knowledge, understanding and use of main concepts and results of fluid mechanics. Ability to use and apply concepts and fundamental results of the theory of partial differential equations in the study of specific problems of fluid mechanics. Knowledge, understanding and use advances mathematical methods in the study of special boundary value problems in fluid mechanics.
7.2 Specific objective of the discipline	 Acquiring basic and advanced knowledge in fluid mechanics. Ability to apply and use mathematical models to describe and analyze problems concerning viscous incompressible fluid flows. Understanding of main concepts and results in the mathematical theory of viscous incompressible flows at low Reynolds numbers. Knowledge, understanding and use of advanced topics in mathematics in the study of special boundary value problems in fluid mechanics. Ability student involvement in scientific research.

8. Content

8.1	Course	Teaching methods	Remarks
1.	Introduction in the L^2 -theory of Sobolev spaces (I):	Lectures, modeling, didactical	
	The fundamental spaces of the theory of distributions.	demonstration, conversation.	
	Distributions.	Presentation of alternative	
		explanations.	
2.	Introduction in the L ² -theory of Sobolev spaces (II):	Lectures, modeling, didactical	
	Sobolev spaces on R ⁿ . Sobolev spaces on Lipschitz	demonstration, conversation.	
	domains in \mathbf{R}^{n} and on Lipschitz boundaries. The dual	Presentation of alternative	
	of a Sobolev space. The Sobolev continuous	explanations.	
	embedding theorem and the Rellich - Kondrachov		
	compact embedding theorem		
3.	Kinematics of fluids: fluid, configuration, motion. Velocity	Lectures, modeling, didactical	
	and acceleration fields. Spatial description of the motion of	demonstration, conversation.	

a fluid.	Presentation of alternative
	explanations.
4. Fluid Dynamics: Principle of mass conservation.	Lectures, modeling, didactical
The continuity equation.	demonstration, conversation.
	Presentation of alternative
	explanations.
5. Fluid Dynamics: The Cauchy stress tensor. The	Lectures, modeling, didactical
Cauchy equations.	demonstration, conversation.
	Presentation of alternative
	explanations.
6. The constitutive equation of ideal fluid. The Euler	Lectures, modeling, didactical
equations.	demonstration, conversation.
	Presentation of alternative
	explanations.
7. The mathematical model of viscous Newtonian fluid:	Lectures, modeling, didactical
The constitutive equation and the Navier-Stokes	demonstration, conversation.
equations. Special forms of the Navier-Stokes	Presentation of alternative
equations.	explanations.
8. Uniqueness results of the Dirichlet and Neumann	Lectures, modeling, didactical
problems for the Stokes system in bounded Lipschitz	demonstration, conversation.
domains in \mathbf{R}^{n} . The weak solution of the Stokes	Presentation of alternative
problem in a bounded Lipschitz domain with	explanations.
homogeneous Dirichlet boundary condition.	
9. The method of fundamental solutions in fluid	Lectures, modeling, didactical
mechanics: The Oseen-Burgers tensor and the	demonstration, conversation.
fundamental pressure vector for the Stokes system in	Presentation of alternative
\mathbf{R}^{n} (n=2, 3).	explanations.
10. The hydrodynamic layer potential theory (I): Bounded	Lectures, modeling, didactical
and compact operators, Fredholm operators on Banach	demonstration, conversation.
spaces. The Fredholm alternative.	Presentation of alternative
	explanations.
11. The hydrodynamic layer potential theory (II): Single-	Lectures, modeling, didactical
and double layer potentials for the Stokes system.	demonstration, conversation.
Boundedness, compactness, and Fredholm properties	Presentation of alternative
in Sobolev spaces	explanations.
12. Applications of the hydrodynamic layer potential	Lectures, modeling, didactical
theory (I): Well-posedness results for boundary value	demonstration, conversation.
problems for the Stokes system in bounded Lipschitz	Presentation of alternative
domains in \mathbf{R}^n , with data in Sobolev spaces.	explanations.
13. Applications of the layer potential theory for the	Lectures, modeling, didactical
Stokes system (II): Well-posedness results for the	demonstration, conversation.
exterior Dirichlet problem for the Stokes system in \mathbb{R}^n ,	Presentation of alternative
with data in Sobolev spaces.	explanations.
14. Transmission problems for the Stokes system in	Lectures, modeling, didactical
Lipschitz domains. Existence and uniqueness results in	demonstration, conversation.
Sobolev spaces. Applications to viscous	Presentation of alternative
incompressible flows in the presence of interfaces.	explanations.
Numerical results.	

Bibliography

- 1. Kohr, M., Pop, I., *Viscous Incompressible Flow for Low Reynolds Numbers*, WIT Press (Wessex Institute of Technology Press), Southampton (UK) Boston, 2004
- 2. Kohr, M., *Modern Problems in Viscous Fluid Mechanics*, Cluj University Press, Cluj-Napoca, 2 vols. 2000 (in Romanian)

- 3. Kohr, M., Special Topics of Mechanics, Cluj University Press, Cluj-Napoca, 2005 (in Romanian)
- 4. Truesdell, C., Rajagopal, K.R., An Introduction to the Mechanics of Fluids, Birkhäuser, Basel, 2000
- 5. Pozrikidis, C., *Introduction to Theoretical and Computational Fluid Dynamics*, Oxford University Press, Oxford, 2011
- 6. Kiselev, S.P., Vorozhtsov, E.V., Fomin, V.M., Foundations of Fluid Mechanics with Applications. *Problem Solving Using Mathematica*, Birkhäuser, Boston, 1999
- 7. Galdi, G.P., *An Introduction to the Mathematical Theory of the Navier–Stokes Equations*. Second Edition, Springer, Berlin, 2011
- 8. Adams, R. Fournier, J., *Sobolev Spaces*, 2nd edition, Pure and Applied Mathematics, vol. 140, Elsevier/Academic Press, Amsterdam, 2003
- 9. Hsiao, G.C., Wendland W.L., Boundary Integral Equations, Springer-Verlag, Heidelberg, 2008
- 10. McLean, W., *Strongly Elliptic Systems and Boundary Integral Equations*, Cambridge University Press, Cambridge, UK, 2000
- 11. Wloka, J. T., Rowley, B., Lawruk, B., *Boundary Value Problems for Elliptic Systems*, Cambridge University Press, Cambridge, 1995

12. Mitrea, M. Wright, M., *Boundary value problems for the Stokes system in arbitrary Lipschitz domains*, Astérisque, 344 (2012): viii+241 pp.

8.2 Seminar	Teaching methods	Remarks
1. Introduction in the L ² -theory of Sobolev spaces (I): The fundamental spaces of the theory of distributions. Distributions.	Applications of course concepts. Description of arguments and proofs for solving problems. Homework assignments. Direct answers to students.	1 hour/week
2. Introduction in the L ² -theory of Sobolev spaces (II): Sobolev spaces over R ⁿ . Sobolev spaces on Lipschitz domains in R ⁿ and on Lipschitz boundaries. Trace theorems.	Applications of course concepts. Description of arguments and proofs for solving problems. Homework assignments. Direct answers to students.	1 hour/week
3. Differential operators. Material derivatives. The Euler theorem. Applications.	Applications of course concepts. Description of arguments and proofs for solving problems. Homework assignments. Direct answers to students.	1 hour/week
4. Second order Cartesian tensors in R ⁿ .	Applications of course concepts. Description of arguments and proofs for solving problems. Homework assignments. Direct answers to students.	1 hour/week
5. Properties of the Cauchy stress tensor: Cauchy's fundamental theorem, and the symmetry property.	Applications of course concepts. Description of arguments and proofs for solving problems. Homework assignments. Direct answers to students.	1 hour/week
6. The mathematical model of incompressible fluid.	Applications of course concepts. Description of arguments and proofs for solving problems. Homework assignments. Direct answers to students.	1 hour/week
7. The Killing theorem. Applications.	Applications of course concepts.	1 hour/week

	T	1
	Description of arguments and proofs for solving problems. Homework assignments. Direct answers to students.	
8. The weak solution of the Stokes problem in a bounded Lipschitz domain with homogeneous Dirichlet boundary condition.	Applications of course concepts. Description of arguments and proofs for solving problems. Homework assignments. Direct answers to students.	1 hour/week
9. The exterior Dirichlet problem for the Stokes system in Lipschitz domains in R ⁿ (n=2,3). Uniqueness results and applications. The Stokes Paradox.	Applications of course concepts. Description of arguments and proofs for solving problems. Homework assignments. Direct answers to students.	1 hour/week
10. The method of fundamental solutions in fluid mechanics (I): Direct layer potential representations of the velocity field of Stokes flow.	Applications of course concepts. Description of arguments and proofs for solving problems. Homework assignments. Direct answers to students.	1 hour/week
11. The method of fundamental solutions in fluid mechanics (II). The Stokes flow past a solid (fluid) sphere.	Applications of course concepts. Description of arguments and proofs for solving problems. Homework assignments. Direct answers to students.	1 hour/week
12. Well-posedness results in Sobolev spaces for boundary value problems for the Stokes system in bounded Lipschitz domains in R ⁿ (n≥2).	Applications of course concepts. Description of arguments and proofs for solving problems. Homework assignments. Direct answers to students.	1 hour/week
13. Well-posedness results for the exterior Dirichlet problem for the Stokes system in R ⁿ , with data in Sobolev spaces.	Applications of course concepts. Description of arguments and proofs for solving problems. Homework assignments. Direct answers to students.	1 hour/week
14. Well-posedness results for transmission problems for the Stokes system. Applications to viscous incompressible fluid flows in the presence of interfaces. Numerical results based on the boundary element method.	Applications of course concepts. Description of arguments and proofs for solving problems. Homework assignments. Direct answers to students.	1 hour/week

Bibliography

- 1. Kohr, M., Pop, I., *Viscous Incompressible Flow for Low Reynolds Numbers*, WIT Press (Wessex Institute of Technology Press), Southampton (UK) Boston, 2004
- 2. Kohr, M., *Modern Problems in Viscous Fluid Mechanics*, Cluj University Press, Cluj-Napoca, 2 vols. 2000 (in Romanian)
- 3. Kohr, M., Special Topics of Mechanics, Cluj University Press, Cluj-Napoca, 2005 (in Romanian)
- 4. Truesdell, C., Rajagopal, K.R., An Introduction to the Mechanics of Fluids, Birkhäuser, Basel, 2000
- 5. Pozrikidis, C., *Introduction to Theoretical and Computational Fluid Dynamics*, Oxford University Press, 2011
- 6. Kiselev, S.P., Vorozhtsov, E.V., Fomin, V.M., Foundations of Fluid Mechanics with Applications. Problem Solving Using Mathematica, Birkhäuser, Boston, 1999
- 7. Precup, R., Lectures on Partial Differential Equations, Cluj University Press, Cluj-Napoca, 2004 (in

Romanian)

- 8. Hsiao, G.C., Wendland W.L., Boundary Integral Equations, Springer-Verlag, Heidelberg, 2008
- 9. Taylor, M., Partial Differential Equations, Springer-Verlag, New York, 1996-1997, vol. 1-3
- 10. Galdi, G.P., An Introduction to the Mathematical Theory of the Navier–Stokes Equations. Second Edition. Springer, Berlin, 2011
- 11. Wloka, J. T., Rowley, B., Lawruk, B., *Boundary Value Problems for Elliptic Systems*, Cambridge University Press, Cambridge, 1995
- 12. Mitrea, M. Wright, M., *Boundary value problems for the Stokes system in arbitrary Lipschitz domains*, Astérisque, 344 (2012): viii+241 pp.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The content of this discipline is in accordance with the curricula of the most important universities in Romania and abroad, where the applied mathematics plays an essential role. This discipline is useful in preparing future researchers in pure and applied mathematics, as well as those who use mathematical models and advanced methods of study in other areas.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	Knowledge of concepts and basic results	Written exam at the end the semester	60%
	Ability to justify by proofs theoretical results		
10.5 Seminar/lab activities	Ability to apply concepts and results acquired in the course in mathematical modeling and analysis of problems in fluid mechanics	Evaluation of reports and homework during the semester, and active participation in the seminar activity.	40%
10 6 Minimum norformano		A midterm control work.	

10.6 Minimum performance standards

At least grade 5 (from a scale of 1 to 10) at both written exam and seminar activity during the semester.

Date Signature of course coordinator Signature of seminar coordinator

2.05.2015 Professor Mirela KOHR Professor Mirela KOHR

Date of approval Signature of the head of department

Professor Octavian AGRATINI