SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş-Bolyai University Cluj-Napoca
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Master
1.6 Study programme /	Applied Mathematics
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline Porous Media and Transfer Phenomena							
2.2 Course coordinator Conf. Dr. Teodor Grosan							
2.3 Seminar coordinator				Conf. Dr. Teodor Grosan			
2.4. Year of	2	2.5	4	2.6. Type of	Ε	2.7 Type of	0
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	1+1
				seminar/laboratory	
3.4 Total hours in the curriculum	48	Of which: 3.5 course	24	3.6	12+1
				seminar/laboratory	2
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					27
Additional documentation (in libraries, on electronic platforms, field documentation)					30
Preparation for seminars/labs, homework, papers, portfolios and essays					30
Tutorship					30
Evaluations					10
Other activities:					
3.7 Total individual study hours		127			•
3.8 Total hours per semester		175			

4. Prerequisites (if necessary)

3.9 Number of ECTS credits

4.1. curriculum	Fluid Mechanics
4.2. competencies	Matlab, Mathematical Software

7

5. Conditions (if necessary)

5.1. for the course	Videoprojector
5.2. for the seminar /lab	•
activities	

6. Specific competencies acquired

Professional competencies	 Ability to understand and manipulate concepts, results and advanced mathematical theories. Ability to model and analyze from the mathematical point of view real processes from other sciences, economics, and engineering. Ability to use the scientific language and to write scientific reports and papers.
Transversal competencies	 Ability to inform themselves, to work independently or in a team in order to realize studies and to solve complex problems. Ability to use advanced and complementary knowledge in order to obtain a PhD in Pure Mathematics, Applied Mathematics, or in other fields that use mathematical models. Ability for continuous self-perfecting and study.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• Knowledge, understanding and use of main concepts and results in fluid mechanics and heat transfer
7.2 Specific objective of the discipline	• Mathematical and numerical modelling of physical phenomena involving fluid flow through porous media and mass and heat transfer

8. Content

8.1 Course	Teaching methods	Remarks
1. Introduction in Continuum Mechanics	Lectures, modeling,	
	didactical	
	demonstration,	
	conversation.	
	Presentation of	
	alternative	
	explanations.	
2. Introduction in Fluid Mechanics. Euler equations.	Lectures, modeling,	
Bernoulli's principle.	didactical	
	demonstration,	
	conversation.	
	Presentation of	
	alternative	
	explanations.	
2. Navier-Stokes equations. Dimensionless numbers.	Lectures, modeling,	
	didactical	
	demonstration,	
	conversation.	
	Presentation of	
	alternative	
	explanations.	
3. Energy equation. Boussinesq approximation	Lectures, modeling,	
	didactical	
	demonstration,	
	conversation.	
	Presentation of	

alternative explanations.4. Properties of porous media. Momentum equation. Darcy's lawLectures, modeling, didactical demonstration,
4. Properties of porous media. Momentum equation.Lectures, modeling, didacticalDarcy's lawdidactical
Darcy's law didactical
5
demonstration,
conversation.
Presentation of
alternative
explanations.
4. Extensions of the Darcy's law. Boundary conditions Lectures, modeling,
didactical
demonstration,
conversation.
Presentation of
alternative
explanations.
5. Averaging method (I) Lectures, modeling,
didactical
demonstration,
conversation.
Presentation of
alternative
explanations.
6. Averaging method (II) Lectures, modeling,
didactical
demonstration,
conversation.
Presentation of
alternative
explanations.
7.Boundary layer Lectures, modeling,
didactical
demonstration,
conversation.
Presentation of
alternative
explanations.
8. Numerical methods for PDE (I) Lectures, modeling,
didactical
demonstration,
conversation.
Presentation of
alternative
explanations.
9. Numerical methods for PDE (II) Lectures, modeling,
didactical
demonstration,
conversation.
Presentation of
alternative
explanations.
10. Natural convection in a rectangular porous cavity Lectures, modeling,
with internal heat generation didactical
demonstration,
conversation.

	Presentation of	
	alternative	
	explanations.	
11. Lid-driven cavity problem		
12. Natural convection in a differentially heated square		
cavity		

Bibliografie

- 1. Groșan T., Transfer Convectiv și Radiativ de Căldură în Medii Poroase, Casa Cărții de Stiință, Cluj-Napoca, 2004
- 2. Nield D.A., Bejan A. Convection in Porous Media, Springer, 1998
- 3. Ene H., Polisevski D., Thermal Flow in Porous Media, Reidel, Dordrecht 1987
- 4. Gheorghiță Ş., Introducere în hidrodinamica corpurilor poroase, Ed. Academiei RSR, București 1969.
- 5. Ingham D.B., Pop I., Transport in Porous Media, Pergamon, 1998, 2002.
- 6. Patankar S.V., Numerical Heat Transfer and Fluid Flow, Hemisphere, 1980

6. Patankar S.V., Numerical Heat Transfer and Fluid Flow, F		
8.2 Seminar / laborator	Teaching methods	Remarks
1. Analytical solutions of the Euler equations	Applications of course	
	concepts.	
	Description of	
	arguments and	
	proofs for solving	
	problems.	
	Homework	
	assignments. Direct	
	answers to students.	
2. Beronuolli equation	Applications of course	
	concepts.	
	Description of	
	arguments and	
	proofs for solving	
	problems.	
	Homework	
	assignments. Direct	
	answers to students.	
3. Analytical solutions of the Navier Stokes equations	Applications of course	
	concepts.	
	Description of	
	arguments and	
	proofs for solving	
	problems.	
	Homework	
	assignments. Direct	
	answers to students.	
4. Blasius problem. Analytical solution	Applications of course	
	concepts.	
	Description of	
	arguments and	
	proofs for solving	
	problems.	
	Homework	
	assignments. Direct	
	answers to students.	
5. Blasius problem. Numerical solution	Applications of course	
	concepts.	
	Description of	
	arguments and	
	proofs for solving	
	problems.	

	Homework assignments. Direct
	answers to students.
6. Numerical solutions for cavities problems.	Applications of course
	concepts.
	Description of
	arguments and
	proofs for solving
	problems.
	Homework
	assignments. Direct
	answers to students.

Bibliografie

- 1. Groșan T., Transfer Convectiv și Radiativ de Căldură în Medii Poroase, Casa Cărții de Stiință, Cluj-Napoca, 2004
- 2. Nield D.A., Bejan A. Convection in Porous Media, Springer, 1998
- 3. Ene H., Polisevski D., Thermal Flow in Porous Media, Reidel, Dordrecht 1987
- 4. Gheorghiță Ş., Introducere în hidrodinamica corpurilor poroase, Ed. Academiei RSR, București 1969.
- 5. Ingham D.B., Pop I., Transport in Porous Media, Pergamon, 1998, 2002.
- 6. Patankar S.V., Numerical Heat Transfer and Fluid Flow, Hemisphere, 1980

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The content of this discipline is in accordance with the curricula of the most important universities in Romania and abroad, where the applied mathematics plays an essential role. This discipline is useful in preparing future teachers and researchers in applied mathematics, as well as those who use mathematical models and advanced methods of study in other areas.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	Knowledge of concepts and basic results Ability to justify by proofs theoretical results	Written exam at the end the semester	75%
10.5 Seminar/lab activities		Seminar/lab activity	25%
10.6 Minimum performance → At least grade 5 (from semester.)		written exam and seminar acti	vity during the

Date

Signature of course coordinator

Signature of seminar coordinator

.30.04.2015.....

...Conf.dr. Teodor Grosan

Conf.dr. Teodor Grosan

Date of approval

Signature of the head of department

.....

.....