SYLLABUS

. Information regarding the programme				
1.1 Higher education	Babeş-Bolyai University			
institution				
1.2 Faculty	Faculty of Mathematics and Computer Science			
1.3 Department	Department of Mathematics			
1.4 Field of study	Mathematics			
1.5 Study cycle	Master			
1.6 Study programme /	Applied Mathematics			
Qualification				

2. Information regarding the discipline

2.1 Name of the discipline			Lin	ear Approximation P	roces	ses	
2.2 Course coordinator			Associate professor Teodora Catinas				
2.3 Seminar coordinator			A	Associate professor Teodora Catinas			
2.4. Year of	2	2.5	3	2.6. Type of	Ε	2.7 Type of	Compulsory
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1	
				laboratory		
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6	14	
				laboratory		
Time allotment:					hours	
Learning using manual, course support, bibliography, course notes						
Additional documentation (in libraries, on electronic platforms, field documentation)						
Preparation for seminars/labs, homework, papers, portfolios and essays						
Tutorship						
Evaluations						
Other activities:						
3.7 Total individual study hours						

3.7 Total individual study nours	158
3.8 Total hours per semester	200
3.9 Number of ECTS credits	8

4. Prerequisites (if necessary)

4.1. curriculum	Mathematical Analysis		
	• Special Topics in Numerical Analysis		
4.2. competencies	• Comparative assessment and efficient use of various methods of demonstration		

5. Conditions (if necessary)

5.1. for the course	•
5.2. for the seminar /lab	•

6. Spec	6. Specific competencies acquired							
Professional	competencies	 The ability to understand and manipulate concepts, results and theories advanced in mathematics Ability to use the knowledge gained and complementary in achieving a PhD in Mathematics 						
Transversal	competencies	 Ability to self-improvement and to train continuously Ability to use mathematical software and advanced methods of numerical analysis and programming for numerical solving of problems. Ability to model and analyze from a mathematical point of view real processes from other sciences, economics and engineering 						

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	Assimilation of modern techniques of approximation of functions
7.2 Specific objective of the discipline	 Deepening different construction methods of linear positive operators Knowledge of the outstanding classes of approximation operators of discrete and continuous type Ability to apply numerical algorithms to solve practical and real life problems.

8. Content

8.1 Co	ourse	Teaching methods	Remarks
1.	Positive linear operators: preliminaries, definitions,		
	properties, Bohman-Korovkin theorems.	Interactive exposure:	
		explanation, conversation	
2.	Moduli of continuity, moduli of smoothness. Properties	Interactive exposure:	
		explanation, conversation	
3.	Quantitative estimates. The approximation error. K –	Interactive exposure:	
	functionals. Properties.	_	
		explanation, conversation	
4.	Bernstein operators.	Interactive exposure:	
		explanation, conversation	
5.	Operators of Bernstein type: Schurer, Cheney-Sharma,	Interactive exposure:	
	Stancu, Kantorovich and Durrmeyer operators.	_	
		explanation, conversation	
6.	Construction of some approximation processes:		
	Bleimann-Butzer-Hahn, Mastroianni, Szasz, Baskakov,	Interactive exposure:	
	Meyer-Konig, Zeller operators.		
		explanation, conversation	
7.	Sumation methods: Cesaro, Euler, Jakimovski.	Interactive exposure:	
		explanation, conversation	
8.	Least square approximation. Discrete least squares		
	approximation: linear and polynomial least squares.	Interactive exposure:	
		explanation, conversation	

9. Orthogonal polynomials and least squares approximation.	Interactive exposure:
	explanation, conversation
 Extensions of some classical univariate interpolation methods to multivariate case: extension of Lagrange, Newton, Hermite and Lidstone interpolation. 	Interactive exposure:
	explanation, conversation
11. Interpolation by means of Newton's algorithm.	Interactive exposure: explanation, conversation
12. Interpolation processes on domains with curved sides.	Interactive exposure: explanation, conversation
13. Some applications of the interpolation processes to surfaces generation.	Interactive exposure:
	explanation, conversation
14. Some applications to numerical integration of functions.	Interactive exposure: explanation, conversation

Bibliography

- 1. O. Agratini, Aproximare prin operatori liniari, Ed. Presa Univ. Clujeană, 2000.
- 2. O. Agratini, I. Chiorean, Gh. Coman, R.T. Trîmbitaş, *Analiză Numerică și Teoria Aproximării*, vol. III, Ed. Presa Univ. Clujeană, 2002;
- **3.** F. Altomare, M. Campiti, *Korovkin type Approximation Theory and its Applications*, de Gruyter Studies in Mathematics, Vol. 17, Walter de Gruyter, Berlin New York, 1994.
- 4. R. L. Burden, J. D. Faires, *Numerical Analysis*, PWS Publishing Company, 1985.
- 5. T. Cătinaș, Interpolation of scattered data, Ed. Casa Carții de Știință, 2007.
- 6. I. Chiorean, T. Cătinaș, R. Trîmbitaș, Analiză numerică, Ed. Presa Univ. Clujeană, 2010.
- 7. Gh. Coman, T. Cătinaș, și alții, Interpolation operators, Ed. Casa Cărții de Știință, Cluj-Napoca, 2004.
- 8. Gh. Coman, I. Chiorean, T. Cătinaș, Numerical Analysis. An Advanced Course, Ed. Presa Univ. Clujeană, 2007.
- 9. D.D. Stancu, Gh. Coman, O. Agratini, R. Trimbitas, *Analiză Numerică și Teoria Aproximării*, vol. I, Ed. Presa Univ. Clujeană, 2001;
- **10.** D.D. Stancu, Gh. Coman, P. Blaga, *Analiză Numerică și Teoria Aproximării*, vol. II, Ed. Presa Univ. Clujeană, 2002;

8.2 Sei	ninar / laboratory	Teaching methods	Remarks
1.	Introductory examples and problems in Matlab.	Explanation, dialogue,	
		practical examples.	
2.	Generation of Bernstein polynomials.	Explanation, dialogue,	
		examples.	
3.	Generation of some Bernstein-type operators.	Explanation, dialogue,	
		practical examples.	
4.	Discrete least square approximation (linear and	Explanation, dialogue,	
	polynomial) and continuous least square	examples.	
	approximation. Practical examples.		
5.	Interpolation by means of Newton's algorithm.	Explanation, dialogue,	
	Computation of some tensorial product and boolean	practical examples.	
	sum operators for domains with curved sides.		
	Graphical representations.		
6.	Generation of some roof surfaces. Graphical	Explanation, dialogue,	
	representations.	practical examples.	
7.	Generation of some numerical integration formulas.	Explanation, dialogue,	
		practical examples.	

Bibliography

1. Agratini, O., Aproximare prin operatori liniari, Presa Universitară Clujeană, Cluj-Napoca, 2000.

2. Agratini, O., Chiorean, I., Coman, Gh., Trîmbițaş, R., *Analiză numerică și teoria aproximării*, Vol. III, Presa Universitară Clujeană, Cluj-Napoca, 2002.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- This program covers the necessary basic knowledge in this area
- The content of the course is important for seeing the application of mathematical knowledge in solving practical and real life problems.

	10. Evaluation			
	Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the
				grade (%)
	10.4 Course		Written exam	70%
	10.5 Seminar/lab activities	- be able to implement course	Evaluation and continuous	30%
		concepts and the numerical	observations during the semester.	
		algorithms		
		- apply techniques for different		
		practical problems		
	10.6 Minimum performance	e standards		
ſ	At least grade 5 (from a sc	ale of 1 to 10) at written exam		

Date

Signature of course coordinator

Signature of seminar coordinator

September 16, 2015

Teodora Catinas

Octavian Agratini