SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş-Bolyai University Cluj-Napoca
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Master
1.6 Study programme /	Applied Mathematics
Qualification	

2. Information regarding the discipline

2.1 Name of the	Special topics of real and complex analysis (Capitole speciale de analizã					
discipline	realã și complexã)					
2.2 Course coordinator	Prof. Dr. Gabriela KOHR					
2.3 Seminar coordinator	Seminar coordinator Prof. Dr. Gabriela KOHR					
2.4 . Year of study 2 2.5	Semester 3	3	2.6. Type of evaluation	E	2.7 Type of discipline	DF

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 cour	se 2	3.3 seminar/laboratory	1 sem
3.4 Total hours in the curriculum	42	Of which: 3.5	28	3.6 seminar/laboratory	14
		course			
Time allotment:					hours
Learning using manual, course suppor	t, bibl	iography, course not	es		46
Additional documentation (in libraries, on electronic platforms, field documentation)				46	
Preparation for seminars/labs, homework, papers, portfolios and essays				46	
Tutorship				11	
Evaluations				9	
Other activities:				-	
3.7 Total individual study hours		158			

3.8 Total hours per semester	200
3.9 Number of ECTS credits	8

4. Prerequisites (if necessary)

4.1 curriculum	 Mathematical analysis (Differential calculus in Rⁿ, integral calculus in Rⁿ)
	Real functions; Complex analysis
4.2 competencies	• There are useful logical thinking and mathematical notions and results from the above mentioned fields

5. Conditions (if necessary)

5.1 for the course	Classroom with blackboard/video projector
5.2 for the seminar /lab	Classroom with blackboard/video projector
activities	

6. Specific competencies acquired

-	
	• Ability to understand and manipulate concepts, results and advanced mathematical theories.
Professional competencies	 Ability to model and analyze from the mathematical point of view real processes from other sciences, economics, and engineering. Ability to use the scientific language and to write scientific reports and papers. Acquiring specific methods of real and complex analysis to study certain special problems in other areas of mathematics.
	• Ability to inform themselves, to work independently or in a team in order to realize studies
	and to solve complex problems
	and to solve complex problems.
sversal oetencies	• Ability to use advanced and complementary knowledge in order to obtain a PhD in Pure Mathematics, Applied Mathematics, or in other fields that use mathematical models.
Tran comp	• Ability for continuous self-perfecting and study.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Knowledge, understanding and use of main concepts and advanced results in topology, measure theory and complex analysis. Ability to use learned concepts to study of certain special problems in complex analysis, partial differential equations.
7.2 Specific objective of the discipline	 Acquiring basic and advanced knowledge in topology, measure theory and complex analysis. The study of various classes of topological spaces and the connection between these classes.
	• Knowledge, understanding and use the notions of measurable function, convergence of measurable functions, L ^p spaces, Fourier series, real or complex measures.
	• Knowledge, understanding the notions of semicontinuous function, absolutely continuous function, and use these notions to study certain special problems in complex analysis.
	• Application of fundamental results in complex analysis to study some modern problems in mathematics and applied mathematics.
	• Ability student involvement in scientific research

8. Content

8.1 Course	Teaching methods	Remarks
1. Connected topological spaces. Examples and	Lectures, modeling,	
applications.	didactical demonstration,	
11	conversation.	
	Presentation of	

	alternative explanations.	
2. Regular topological spaces. Normal topological spaces.	Lectures, modeling,	
Examples.	didactical demonstration,	
	conversation.	
	Presentation of	
	alternative explanations.	
3. Baire spaces. Examples and applications.	Lectures, modeling,	
	didactical demonstration,	
	conversation.	
	Presentation of	
	alternative explanations.	
4. Metrizable topological spaces. Compact topological	Lectures, modeling,	
spaces. Applications.	didactical demonstration,	
	conversation.	
	Presentation of	
	alternative explanations.	
5. Convergence of sequences of measurable functions.	Lectures, modeling,	
Applications.	didactical demonstration,	
	conversation.	
	Presentation of	
	alternative explanations.	
6. L ^P spaces. Fourier series. Fundamental results.	Lectures, modeling,	
	didactical demonstration,	
	conversation.	
	Presentation of	
7 Deel and complex measures. The Dedan and Nikedam	Lestures modeling	
7. Real and complex measures. The Radon and Nikodym	didactical demonstration	
theorem. The measurability and integrability on product	didactical demonstration,	
spaces. Fubini's theorem.	Presentation of	
	alternative explanations	
8 Applications of residue theory in the study of certain	Lectures modeling	
problems in real analysis	didactical demonstration	
problems in rear analysis.	conversation	
	Presentation of	
	alternative explanations.	
9. Families of holomorphic functions. Compactness in the	Lectures, modeling.	
space $H(O)$	didactical demonstration,	
space 11(12).	conversation.	
	Presentation of	
	alternative explanations.	
10. Univalent functions. General results.	Lectures, modeling,	
	didactical demonstration,	
	conversation.	
	Presentation of	
	alternative explanations.	
11. Lipschitz and absolutely continuous functions.	Lectures, modeling,	
Applications in the study of certain special problems in	didactical demonstration,	
complex analysis (I).	conversation.	
	Presentation of	
	alternative explanations.	
12. Lipschitz and absolutely continuous functions.	Lectures, modeling,	
Applications in the study of certain special problems in	didactical demonstration,	
	conversation.	

complex analysis (II).	Presentation of
	alternative explanations.
13. Harmonic functions. Fundamental results. Examples	Lectures, modeling,
and applications.	didactical demonstration,
	conversation.
	Presentation of
	alternative explanations.
14. Subharmonic functions. Fundamental results.	Lectures, modeling,
Examples and applications.	didactical demonstration,
	conversation.
	Presentation of
	alternative explanations.

Bibliography

- 1. Kohr, G., Mocanu, P.T., *Special Topics in Complex Analysis*, Cluj University Press, Cluj-Napoca, 2005 (in Romanian).
- 2. Anisiu, V., Topology and Measure Theory, Babeş-Bolyai University, Cluj-Napoca, 1995 (in Romanian).
- 3. Graham, I., Kohr, G., *Geometric Function Theory in One and Higher Dimensions*, Marcel Dekker Inc, New York, 2003.
- 4. Folland, G.B., Real Analysis. Modern Techniques and their applications, Wiley, 1999.
- 5. Royden, H.L., Real Analysis, third Ed., MacMillan, New York, 1988.
- 6. Rudin, W., Real and Complex Analysis, 3rd Ed., Mc. Graw-Hill, 1987.
- 7. Berenstein, C.A., Gay, R., Complex Variables: An Introduction, Springer-Verlag New York Inc., 1991.
- 8. Conway, J.B., *Functions of One Complex Variable*, Graduate Texts in Mathematics, 159, Springer Verlag, New York, 1996.
- 9. Taylor, M.E., Measure Theory and Integration, Amer. Math. Soc. Providence, Rhode Island, 2006.
- 10. Benedetto, J., Czaja, W., Integration and Modern Analysis, Birkhäuser, Boston, 2009.
- 11. Stein, E., Shakarchi, R., Complex Analysis, Princeton University Press, 2003.

8.2 Seminar	Teaching methods	Remarks
1. Connected topological spaces. Examples and	Applications of course	1 hour/week
applications.	concepts. Description	
	of arguments and	
	proofs for solving	
	problems. Homework	
	assignments. Direct	
	answers to students.	
2. Regular and normal topological spaces. Examples and	Applications of course	1 hour/week
applications.	concepts. Description	
	of arguments and	
	proofs for solving	
	problems. Homework	
	assignments. Direct	
	answers to students.	
3. Baire spaces. Examples and applications.	Applications of course	1 hour/week
	concepts. Description	
	of arguments and	

	proofs for solving	
	problems. Homework	
	assignments. Direct	
	answers to students.	
4. Product topological spaces. Applications.	Applications of course	1 hour/week
	concepts. Description	
	of arguments and	
	proofs for solving	
	problems. Homework	
	assignments. Direct	
	answers to students.	
5. Metrizable topological spaces. Compact topological	Applications of course	1 hour/week
spaces. Examples.	concepts. Description	
	of arguments and	
	proofs for solving	
	problems. Homework	
	assignments. Direct	
	answers to students.	
6. Measurable functions. Types of convergence of	Applications of course	1 hour/week
measurable functions. Examples.	concepts. Description	
1	of arguments and	
	proofs for solving	
	problems. Homework	
	assignments. Direct	
	answers to students.	
7. Lebesgue integral. L ^p -spaces. Fourier series. Examples.	Applications of course	1 hour/week
Applications.	concepts. Description	
	of arguments and	
	proofs for solving	
	problems. Homework	
	assignments. Direct	
	answers to students.	
8. Applications of residues theory. The computation of	Applications of course	1 hour/week
some real integrals by using residues theory.	concepts. Description	
	of arguments and	
	proofs for solving	
	problems. Homework	
	assignments. Direct	
	answers to students.	
9. Examples of compact families of holomorphic	Applications of course	1 hour/week
functions.	concepts. Description	
	of arguments and	
	proofs for solving	
	problems. Homework	
	assignments. Direct	
	answers to students.	
10. Univalent functions. Diffeomorphism criteria.	Applications of course	1 hour/week
Applications.	concepts. Description	
	of arguments and	
	proofs for solving	
	problems. Homework	
	assignments. Direct	
	answers to students.	
11. Loewner chains and their transition functions.	Applications of course	1 hour/week

Applications.	concepts. Description	
	of arguments and	
	proofs for solving	
	problems. Homework	
	assignments. Direct	
	answers to students.	
12. Loewner chains and the Loewner differential equation.	Applications of course	1 hour/week
Applications.	concepts. Description	
	of arguments and	
	proofs for solving	
	problems. Homework	
	assignments. Direct	
	answers to students.	
13. Harmonic functions. Examples and applications.	Applications of course	1 hour/week
	concepts. Description	
	of arguments and	
	proofs for solving	
	problems. Homework	
	assignments. Direct	
	answers to students.	
14. Subharmonic functions. Examples and applications.	Applications of course	1 hour/week
	concepts. Description	
	of arguments and	
	proofs for solving	
	problems. Homework	
	assignments. Direct	
	answers to students.	

Bibliography

- 1. Kohr, G., Mocanu, P.T., *Special Topics in Complex Analysis*, Cluj University Press, Cluj-Napoca, 2005 (in Romanian).
- 2. Anisiu, V., Topology and Measure Theory, Babeş-Bolyai University, Cluj-Napoca, 1995 (in Romanian).
- 3. Graham, I., Kohr, G., *Geometric Function Theory in One and Higher Dimensions*, Marcel Dekker Inc, New York, 2003.
- 4. Folland, G.B., Real Analysis. Modern Techniques and their applications, Wiley, 1999.
- 5. Royden, H.L., Real Analysis, third Ed., MacMillan, New York, 1988.
- 6. Rudin, W., Real and Complex Analysis, 3rd Ed., Mc. Graw-Hill, 1987.
- 7. Berenstein, C.A., Gay, R., Complex Variables: An Introduction, Springer-Verlag New York Inc., 1991.
- 8. Conway, J.B., *Functions of One Complex Variable*, Graduate Texts in Mathematics, 159, Springer Verlag, New York, 1996.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

• The content of this discipline is in accordance with the curricula of the most important universities in Romania and abroad, where the applied mathematics plays an essential role. This discipline is useful in preparing future teachers and researchers in applied mathematics, as well as those who use mathematical models and advanced methods of study in other areas.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in	
			the grade (%)	
10.4 Course	Knowledge of concepts	Written exam at the end the	60%	
	and basic results	semester.		
	Ability to justify by proofs theoretical results			
10.5 Seminar/lab	Ability to apply concepts	Evaluation of reports and	40%	
activities	and results acquired in the	homework during the semester,		
	course to solve certain	and active participation in the		
	problems.	seminar activity.		
	-	-		
		A midterm control work.		
	There are valid the official			
	rules of the faculty			
	concerning the attendance			
	of students to teaching			
	activities.			
10.6 Minimum performance standards				
• At least grade 5 (from a scale of 1 to 10) at both written exam and seminar activity during the semester.				

Date	Signature of course coordinat	or Signature of seminar coordinator	
2.05.2015	Prof. Dr. Gabriela KOHR	Prof. Dr. Gabriela KOHR	
Date of approval		Signature of the head of department	

.....

Prof. Dr. Octavian AGRATINI