SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş Bolyai University
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme / Qualification	Software Engineering

2. Information regarding the discipline

2.1 Name of the discipline Decision Support Systems							
2.2 Course coor	din	nator Lecturer Professor PhD. Prejmerean Vasile					asile
2.3 Seminar coordinator			Lec	turer Professor Ph	D. Pı	rejmerean Va	asile
2.4. Year of	2	2.5	3	2.6. Type of	E	2.7 Type of	Compulsory
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3 seminar/laboratory	1/-
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6 seminar/laboratory	14/-
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					28
Additional documentation (in libraries, on electronic platforms, field documentation)					36
Preparation for seminars/labs, homework, papers, portfolios and essays					36
Tutorship					20
Evaluations				24	
Other activities: Project				14	
0.7.Th + 11 11 1 1 1 1 1		4.50			

3.7 Total individual study hours	158
3.8 Total hours per semester	200
3.9 Number of ECTS credits	8

4. Prerequisites (if necessary)

4.1. curriculum	 Ability to work with an integrated development environment
4.2. competencies	 Average programming skills in a visual programming language

5. Conditions (if necessary)

5.1. for the course	An LCD projector
5.2. for the seminar /lab activities	Laboratory with twelve computers; high level programming
	language environment

6. Specific competencies acquired

	•	Ability to apply knowledge of computing and mathematics appropriate to the discipline;
ional	•	Ability to analyze a problem, and identify and define the computing requirements appropriate to its solution;
Professional competencies	•	Ability to identify and to specify computing requirements of an application and to design, implement, evaluate, and justify computational solutions;
Ь	•	Ability to use current techniques and skills to integrate available theory and tools necessary for applied computing practices.
al	•	Ability to apply mathematical foundations, algorithmic principles, and computer science theory;
vers	•	Ability to apply design and development principles in the construction of software systems;
Transversal competencies	•	Ability to acquire knowledge properly in an application domain in the modeling and design;
Tr	•	Ability to work effectively in a team.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Good understanding of hands-on applications; Be able to identify meaningful applied computing problems;
	 Be able to apply theories, principles and concepts with technologies to design, develop, and verify computational solutions;
7.2 Specific objective of the	Knowledge about general theory and specific DSS theory;
discipline	• Systematic knowledge about what the designer of a DSS needs to know;

8. Content

8.1 Course	Teaching methods	Remarks
1. The concept of <i>Decision Support Systems</i> (DSS)	Expositions : description, explanation,	
- The Steps of Decision Support, Classification of	introductive lectures,	
Problems	Other methods: case study; company	
- The Components of a DSS.	examples.	
- Some Computerized Tools for Decision Support	_	
2. Computerized Decision Support	Expositions : description, explanation,	
- Decision Making - Rational Decisions, Definitions	class lectures,	
of Rationality, Bounded Rationality and Muddling	Use of problems: use of problem	
Through	questions, problems and problem	
- Models, The Facilities of Models, Phases of the	situations.	
Decision-Making Process	Other methods: company examples.	
3. The Nature of Managers, Appropriate Data Support,	Expositions : description, explanation,	
Information Processing Models.	dialog-based lectures, current lectures,	
Group Decision Making	Use of problems: problems and	
	problem situations.	
4. Decisions and Decision Modeling - Types of	Expositions: description, explanation,	
Decisions.	class lectures, dialog-based lectures,	
- Human Judgment and Decision Making.	current lectures.	
- Modeling Decisions. Components of Decision	Other methods: case study; company	
Models	examples, discussion of material.	

5 Normativa Systems	Expositions: description explanation
5. Normative Systems	Expositions: description, explanation,
Normative and Descriptive Approaches.Decision-Analytic Decision Support Systems.	class lectures, dialog-based lectures, lectures.
- Equation-Based and Mixed Systems	Other methods: discussion of material.
6. Data Component	Expositions: description, explanation,
- Characteristics of Information.	class lectures, dialog-based lectures,
- Databases to Support Decision Making.	current lectures.
- Database Management Systems	Use of problems: use of problem
Dutabase Management Systems	questions, problems and problem
	situations.
7. Data Warehouses.	Expositions: description, explanation,
- Data Mining and Intelligent Agents	class lectures.
Butte 1711ming und Internigent 1 igentes	Use of problems: use of problem
	questions.
8. Model Component	Expositions: description, explanation,
- Models, Representation, Methodology	class lectures, current lectures.
Wiodels, Representation, Wethodology	Other methods: case study; company
	examples, discussion of
9. Model Based Management Systems, Access to	Expositions: description, explanation,
Models, and Understandability of Results.	class lectures.
- Integrating Models, Sensitivity of a Decision	Other methods: discussion of material
	(using and managing information and
	decision support systems)
10. Intelligence and Decision Support Systems	Expositions: description, explanation,
- Programming Reasoning	class lectures, dialog-based lectures.
- Backward Chaining Reasoning and Forward	Conversations: debate, dialog,
Chaining Reasoning.	conversations for knowledge
Knowledge Representation for Decision Support	consolidation, conversations to
Systems Support	systematize and synthesize knowledge.
- Computational Intelligence for Decision Support,	Discovery : inductive discovery,
- Expert Systems and Artificial Intelligence in	deductive discovery.
Decision Support Systems	Other methods: case study;
	cooperation, company examples.
11. User Interfaces to Decision Support Systems.	Expositions : description, explanation,
- Support for Model Construction and Model	class lectures, dialog-based lectures,
Analysis.	current lectures.
- Support for Reasoning about the Problem Structure	Other methods: case study;
in Addition to Numerical Calculations.	cooperation, company examples,
- Support for Both Choice and Optimization of	discussion of material.
Decision Variables	
12. Graphical Interface	Expositions : description, explanation,
- The Action Language, Menus.	class lectures, current lectures, synthesis
Mail Component	lectures.
- Integration of Mail Management.	Conversations: conversations for
- Implications for DSS Design	knowledge consolidation, conversations
	to systematize and synthesize.
13. Modeling and Analysis.	Expositions : description, explanation,
- Simulation Applications.	class lectures, current lectures.
	Other methods: case study; company
	examples, discussion of
14. Business Analytics.	Expositions : description, explanation,
- DSS based on Data Warehouse.	class lectures.
	Other methods: discussion of material
	(using and managing information and
	decision support systems)

Bibliography

- 1. Alter, S. L. Decision support systems: current practice and continuing challenges. Reading, Mass., Addison-Wesley Pub., 1980.
- 2. Delic, K.A., Douillet,L. and Dayal, U. "Towards an architecture for real-time decision support systems:challenges and solutions, 2001.
- 3. Druzdzel, M. J. and R. R. Flynn. Decision Support Systems. Encyclopedia of Library and Information Science. A. Kent, Marcel Dekker, Inc., 1999
- 4. Finlay, P. N., Introducing decision support systems. Oxford, UK Cambridge, Mass., NCC Blackwell; Blackwell Publishers, 1994.
- 5. French, S. and Geldermann, J. The varied contexts of environmental decision problems and their implications for decision support. Environmental Science and Policy 8 (2005), 378-391.
- 6. French, S., Carter, E., and Niculae, C. Decision support in nuclear and radiological emergency situations: Are we too focused on models and technology? International Journal of Risk Assessment and Management (2007).
- 7. Gachet, A. Building Model-Driven Decision Support Systems with Dicodess. Zurich, VDF, 2004.
- 8. Gadomski, A.M. at al.An Approach to the Intelligent Decision Advisor (IDA) for Emergency Managers.Int. J. Risk Assessment and Management, Vol. 2, Nos. 3/4., 2001.
- 9. Larissa T. Moss, Shaku Atre, Business Intelligence Roadmap: The Complete Project Lifecycle for Decision-Support Applications By Publisher: Addison Wesley Professional Pub Date: February 25, 2003 Print ISBN-10: 0-201-78420-3 Print ISBN-13: 978-0-201-78420-6 Pages: 576 Slots: 2.0
- 10. Little, J.D.C. "Models and Managers: The Concept of a Decision Calculus." Management Science, Vol.16, NO.8, April, 1970.

8.2 Sen	ninar	Teaching methods	Remarks
1.	The first two seminars are dedicated to surveying information sources available on Internet and Intranet, and planning of	Expositions: description, explanation, introductive lectures. Conversations: debate, dialog,	
2.	the papers and projects.	introductive conversations. Other methods : individual study, exercise, homework study.	
3.	The next seven seminars (from three to nine) are dedicated to paper presentations.	Conversations: debate, dialog, introductive conversations,	
4.	mine, are acareares to paper presentations.	conversations for knowledge consolidation, conversations to	
5.		systematize and synthesize knowledge. Use of problems: use of problem	
6.		questions, problems and problem situations. Discovery : directed and independent	
7.		rediscovery, creative discovery, deductive discovery, discovery by	
8.		documenting. Other methods: case study;	
9.		cooperation, individual study, exercise, homework study, company examples, discussion of material.	

10. 11.	The project design: - Design a project with specific goals, specific tasks, and specific outcomes; - Set specific beginning and ending dates for your project, set precise deadlines;	Conversations: debate, dialog. Discovery: experimental discovery, discovery by documenting. Other methods: discussion of material.
13.	The project demos will be scheduled in the last two seminars.	Conversations: debate, dialog. Use of problems: use of problem questions. Discovery: experimental discovery, discovery by documenting. Other methods: discussion of material.

Bibliography

- 1. French, S. and Geldermann, J. The varied contexts of environmental decision problems and their implications for decision support. *Environmental Science and Policy* 8 (2005), 378–391.
- 2. Gadomski, A.M. at al. *An Approach to the Intelligent Decision Advisor (IDA) for Emergency Managers*. Int. J. Risk Assessment and Management, Vol. 2, Nos. 3/4., 2001.
- 3. Hackathorn, R. D., and P. G. W. Keen. (1981, September). "Organizational Strategies for Personal Computing in Decision Support Systems." MIS Quarterly, Vol. 5, No. 3.
- 4. Holsapple, C.W., and A. B. Whinston. (1996). Decision Support Systems: A Knowledge-Based Approach. St. Paul: West Publishing. ISBN 0-324-03578-0
- 5. Jiménez, Antonio; Ríos-Insua, Sixto; Mateos, Alfonso. Computers & Operations Research.
- 6. Jintrawet, Attachai (1995). A Decision Support System for Rapid Assessment of Lowland Rice-based Cropping Alternatives in Thailand. Agricultural Systems 47: 245-258.
- 7. Joyce E. Berg, Thomas A. Rietz, *Prediction Markets as Decision Support Systems*, Kluwer Academic Publishers. Manufactured in The Netherlands, 2003.
- 8. Keen, P. G. W. (1978). Decision support systems: an organizational perspective. Reading, Mass.,
- 9. Keen, P. G. W. (1980). Decision support systems: a research perspective. Decision support systems: issues and challenges. G. Fick and R. H. Sprague. Oxford; New York, Pergamon Press.
- 10. Larissa T. Moss, Shaku Atre, *Business Intelligence Roadmap: The Complete Project Lifecycle for Decision-Support Applications* By Publisher: Addison Wesley Professional Pub Date: February 25, 2003 Print ISBN-10: 0-201-78420-3 Print ISBN-13: 978-0-201-78420-6 Pages: 576 Slots: 2.0
- 11. Little, J.D.C. "Models and Managers: The Concept of a Decision Calculus." *Management Science*, Vol.16,NO.8, April, 1970.
- 12. Sauter, V.L. *Decision Support Systems: An Applied Managerial Approach*, New York: John Wiley & Sons, 1997.
- 13. Sprague, R. H. and H. J. Watson. *Decision support systems*: putting theory into practice. Englewood Clifts, N.J., Prentice Hall, 1993.
- 14. Turban, E. and Aronson, J.E. *Decision Support Systems and Intelligent Systems*, Prentice Hall, Upper Saddle River, NJ, 2001, ISBN-0-13-089465-6
- 15. Turban, E. *Decision support and expert systems: management support systems*. Englewood Cliffs, N.J., Prentice Hall, 1995. ISBN 0-024-21702-6
- 16. Weick, K.E. and Sutcliffe, K. Managing the Unexpected: Assuring High Performance in an Age of

- Complexity. Jossey Bass, San Francisco, CA, 2001.
- 17. Delic, K.A., Douillet,L. and Dayal, U. "Towards an architecture for real-time decision support systems:challenges and solutions, 2001.
- 18. Druzdzel, M. J. and R. R. Flynn. *Decision Support Systems*. Encyclopedia of Library and Information Science. A. Kent, Marcel Dekker, Inc., 1999
- 19. Gachet, A. Building Model-Driven Decision Support Systems with Dicodess. Zurich, VDF, 2004.
- 20. Marakas, G. M. *Decision support systems in the twenty-first century*. Upper Saddle River, N.J., Prentice Hall, 1999.
- 21. Power, D.J. A Brief History of Decision Support Systems DSSResources.COM, World Wide Web, version 2.8, May 31, 2003.
- 22. Reich, Yoram; Kapeliuk, Adi. Decision Support Systems., Nov2005, Vol. 41 Issue 1, p1-19, 19p.
- 23. Decision Support Systems. Elsevier B.V., 2007. [http://www.sciencedirect.com/science/journal/01679236]

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- This course exists in the curriculum of many universities in the world;
- The results of course are considered by companies of software particularly useful and topical.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation	10.3 Share in the	
		methods	grade (%)	
10.4 Course	- know the basic elements and concepts of an Dss;	Written exam	50%	
10.5 Seminar	- complexity, importance and degree of timeliness of the synthesis made	Paper presentation	15%	
Project	apply the course conceptsproblem solving	Project presentation	35%	
10.6 Minimum performance standards				
➤ At least grade 5 at written exam, paper presentations and project realised.				

Date	Signature of course coordinator	Signature of seminar coordinator
1 May 2015	Lect. Dr. PREJMEREAN Vasile	Lect. Dr. PREJMEREAN Vasile
Date of approval	Signature of the head of department	