SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme /	Component Based Programming
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline Rule based Programming							
2.2 Course coordinator Assoc.Prof.PhD. Simona Motogna							
2.3 Seminar coordinator				Assoc.Prof.PhD. S	imon	a Motogna	
2.4. Year of	2	2.5	3	2.6. Type of E 2.7 Type of Compulsory			
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1
				seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6	14
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					30
Additional documentation (in libraries, on electronic platforms, field documentation)					30
Preparation for seminars/labs, homework, papers, portfolios and essays					70
Tutorship					14
Evaluations					14
Other activities:					-
27 T 4 1' 1' 1 1 4 1 1					

3.7 Total individual study hours	158
3.8 Total hours per semester	200
3.9 Number of ECTS credits	8

4. Prerequisites (if necessary)

4.1. curriculum	• None
4.2. competencies	 Average Java programming skills

5. Conditions (if necessary)

5.1. for the course	• None
5.2. for the seminar /lab	• Computers, Eclipse framework (free license), Jess (free academic
activities	license)

6. Specific competencies acquired

	• Systematic use of computer science knowledge to model and interpret new situations, within
	application contexts larger than the known ones
Professional competencies	Detailed knowledge and integrated use of conceptual and methodological apparatus pertaining to informatics to provide solutions for incompletely defined situations, to solve new theoretical and practical problems
ese	Use advanced skills to develop and conduct complex software projects, of practical and/or
	research nature, using a wide range of quantitative and qualitative methods
– 5	• Demonstrate advanced skills to analysis, design, and construction of software systems, using a
	wide range of hardware / software platforms, programming languages and environments, and
	modeling, verification and validation tools
	Project development
al ies	Project presentation
rss	Using different programming paradigms in software development
Transversal competencies	
mp mp	
Tr	

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	The course will introduce students to a completely different way of programming, in which you specify rules of behavior. It will discuss paradigms that allow rule constructions, or addition of rules, and the application areas for which they are suited.	
7.2 Specific objective of the discipline	 to demonstrate medium to large scale rule-based program design, to survey the application areas for which rule based techniques are best suited, and to provide an introduction to the implementation and semantics of rules. 	

8. Content

8.1 Course	Teaching methods	Remarks
Introduction. A review of fundamental data	Exposure, description,	
types, rules, and definitions; discussion of	explanation, debate and	
various programming paradigms and	dialogue, discussion of	
differences between them [5]	case studies	
2. Principles of Rule-based programming:	explanation, debate and	
Review of declarative programming and	dialogue, discussion of	
Prolog languages. Using relations as building	case studies	
blocks in program design. Special features of		
declarative languages. [2]		
3. Java Rule Engine: [jsr]	Exposure, description,	
	explanation	
4. Introduction to Jess: structure, basic constructs	Exposure, description,	
[7]	explanation	
5. Facts in Jess: [7]	Exposure, description,	
	explanation	
6. Rules in Jess: writing rules. Firing and	Exposure, description,	
execution; Rete algorithm[7]	explanation	
7. Java and Jess [7]	Exposure, description,	
	explanation, discussion of	

	case studies	
8. Application development using Jess [7]	Exposure, description,	
	explanation, discussion of	
	case studies	
9. XML Transformation Languages [4]	Exposure, description,	
	explanation, discussion of	
	case studies	
10. Rule based systems in Model Transformations	Exposure, description,	
[7]	explanation, discussion of	
	case studies	
11. Rule based systems for .NET framework	Exposure, description,	
	explanation, discussion of	
	case studies	
12. Case study: Junit test framework [8]	Exposure, description,	
	explanation, discussion of	
	case studies	
13. Rule based systems used in industrial	Exposure, description,	
applications	explanation, discussion of	
	case studies	
14. Reserved topic		Usualy dedicated to
		an invited guest from
		a software company

Bibliography

- 1.R Bird and P Wadler. An Introduction to Functional Programming (2nd Edition if available). Prentice-Hall. 1996
- 2. I Bratko. Prolog Programming for Artificial Intelligence. Addison-Wesley
- 3. Friedman-Hill, Ernest, JESS in Action, Manning, Greenwich, CT, 2003.
- 4. Kowalski, T., Levy, L.; Rule-Based Programming, Springer, 1996
- 5. Mitchell, J. Concepts in Programming Languages, Cambridge Univ. Press, 2003
- 6. S Thomson. The Craft of Functional Programming. Addison-Wesley. 1996.
- 7. Jess Homepage http://www.jessrules.com/jess/index.shtml
- 8. JUnit homepage www.junit.org

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Download, install and get used to Jess		Seminar is organized
		as a total of 7 hours –
		2 hours every second
		week
2. Write small programs in Jess	Dialogue, debate, case	
	studies, examples, proofs	
3. Establish project theme and project architecture	Dialogue, debate, case	
	studies, examples, proofs	
4. Project milestone: facts	Dialogue, debate, case	
	studies, examples, proofs	
5. Project milestone: rules	Dialogue, debate, case	
	studies, examples, proofs	
6. Integration, testing	Dialogue, debate, case	
	studies, examples, proofs	
7. Project presentation	Evaluation	

Bibliography

Same as course

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course respects the IEEE and ACM Curriculla Recommendations for Computer Science studies;
- The content of the course is considered by the software companies as important for average programming skills

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the		
			grade (%)		
10.4 Course	- know the basic principle of	Written exam	50%		
	the domain;				
	- apply the course concepts				
	- problem solving				
10.5 Seminar/lab activities	- be able to implement	-Project	50%		
	course concepts	-documentation			
	- apply techniques for	-portofolio			
	different classes of problems	-continous observations			
10.6 Minimum performance standards					
At least grade 5 (from a scale of 1 to 10) at both written exam and laboratory work.					

Date	Signature of course coordinator	Signature of seminar coordinator
	Assoc.Prof.PhD. Simona MOTOGNA	A Assoc.Prof.PhD. Simona MOTOGNA
Date of appro	oval	Signature of the head of department