
SYLLABUS

1. Information regarding the programme
1.1 Higher education institution Babeş Bolyai University
1.2 Faculty Faculty of Mathematics and Computer Science
1.3 Department Department of Computer Science
1.4 Field of study Computer Science
1.5 Study cycle Master

1.6 Study programme /
Qualification

Software Engineering

2. Information regarding the discipline
2.1 Name of the discipline Methodologies for Software Processes
2.2 Course coordinator Assoc. Prof. Ing. PhD. Florin Craciun
2.3 Seminar coordinator Assoc. Prof. Ing. PhD. Florin Craciun
2.4. Year of
study

1 2.5
Semester

2 2.6. Type of
evaluation

E 2.7 Type of
discipline

compulsory

3. Total estimated time (hours/semester of didactic activities)
3.1 Hours per week 3 Of which: 3.2

course
2 3.3

seminar/laboratory
1

3.4 Total hours in the curriculum 42 Of which: 3.5
course

28 3.6
seminar/laboratory

14

Time allotment: hours
Learning using manual, course support, bibliography, course notes 30
Additional documentation (in libraries, on electronic platforms, field documentation) 30
Preparation for seminars/labs, homework, papers, portfolios and essays 70
Tutorship 14
Evaluations 14
Other activities: -
3.7 Total individual study hours 158
3.8 Total hours per semester 200
3.9 Number of ECTS credits 7

4. Prerequisites (if necessary)
4.1. curriculum None
4.2. competencies Basic software development skills

5. Conditions (if necessary)
5.1. for the course

6. Specific competencies acquired

Profes
sional
compe
tencie

s

 Understanding and working with basic concepts in software engineering;
 Capability of analysis and synthesis;
 Proficient use of methodologies and tools specific tool software systems
 Organization of software production processes.

Trans
versal
compe
tencie
s

 Team work capabilities; able to fulfill different roles
 Professional communication skills; concise and precise description, both oral and

written, of professional results,
 Antepreneurial skills;

7. Objectives of the discipline (outcome of the acquired competencies)
7.1 General objective of the
discipline

and understand fundamental concepts of software quality.

be able to apply basic methods for software analysis and software
quality assurance.

7.2 Specific objective of the
discipline

the end of the course, students

know the main features of the common software process models.

be able to represent the software processes using SPEM standard.

be able to create new software processes.

be able to use CASE tools for authoring, configuring and publishing
software processes

know the principles of different software development
methodologies: model driven development, agile model driven
development, feature driven development, use case driven
development, domain driven development, test driven development.

8. Content
8.1 Course Teaching methods Remarks

1. Software Process Concepts. Definitions.
Main concepts: role, work product, activity.

Exposure,description,
explanation, debate
and dialogue,
discussion of case
studies

2. Software Process Models. Typical tasks and life
cycle of the more common software
development models: ad-hoc development,
waterfall model, v-model, iterative
development, prototyping, rapid application
development, exploratory model, spiral model,
reuse model, unified process.

explanation, debate
and dialogue,
discussion of case
studies

3. Software and System Process Engineering
Meta-Model (SPEM). Meta-model architecture

Exposure,description,
explanation

and principles. SPEM UML profile. Core.
Process structure. Process behavior.

4. Software and System Process Engineering
Meta-Model (SPEM). Managed content.
Method content. Process with methods. Method
Plugin. Process diagrams.

Exposure,description,
explanation

5. Software Process Frameworks. Eclipse Process
Framework Project (EPF).

Exposure,description,
explanation,
discussion of case
studies

6. Software Process Frameworks. Eclipse Open
Unified Process (OpenUP).

Exposure,description,
explanation,
discussion of case
studies

7. Model Driven Architecture (MDA). Basic
Concepts. MDA transformations.

Exposure,description,
explanation,

8. Model Driven Architecture (MDA). Query/View
transformation (QVT). Model to text
transformation (M2T).

Exposure,description,
explanation

9. Agile Model Driven Development (AMDD).
Agile modeling. Principles. Best practices.
Approaches for applying AMDD on projects.

Exposure,description,
explanation,
discussion of case
studies

10. Feature Driven Development (FDD). FDD
process. Feature oriented software development
(FOSD). FOSD phases. Software product lines.

Exposure,description,
explanation,
discussion of case
studies

11. Use Case Driven Development. Goal driven
view. Types of alternative courses. Use case
fundamentals.

Exposure,description,
explanation,
discussion of case
studies

12. Use Case Driven Development. Practical issues.
Iconix process.

Exposure,description,
explanation,
discussion of case
studies

13. Domain Driven Development (DDD).
Ubiquitous language. Bounded contexts.
Layered architecture. Aggregates. Factories.
Repositories. Services.

Exposure,description,
explanation,
discussion of case
studies

14. Test Driven Development (TDD).
Fundamentals. Examples.

Exposure,description,
explanation,
discussion of case
studies

Bibliography
1. Steve Adolph, Paul Bramble, Alistair Cockburn, and Andy Pols, Patterns for Effective Use

Cases, Addison-Wesley, 2002.

2. Scott W. Ambler, Agile Model Driven Development: The Key to Scaling Agile Software
Development, 2009, http://www.agilemodeling.com/essays/amdd.htm

3. Sven Apel and Christian Kastner, An overview of Feature-Oriented Software Development,
Journal of Object Technology, vol. 8, no. 5, July-August 2009.

4. Kent Beck, Test-Driven Development by Example, Addison-Wesley, 2002.

5. Eric Evans, Domain-Driven Design, Addison-Wesley, 2004.

6. Eclipse Process Framework Project (EPF), 2010, http://www.eclipse.org/epf/

7. Eclipse Open Unified Process (OpenUP), 2010, http://epf.eclipse.org/wikis/openup

8. OMG, Model-Driven Architecture, 2003, http://www.omg.org/cgi-bin/doc?omg/03-06-01

9. OMG, Software & Systems Process Engineering Meta-Model Specification (SPEM) version
2.0, 2008, http://www.omg.org/spec/SPEM/2.0/

10. Clay Williams, Matthew Kaplan, Tim Klinger, and Amit Paradkar, Toward Engineered, Useful
Use Cases, Journal of Object Technology, vol. 4, no. 6, August 2005.

8.2 Seminar / laboratory Teaching methods Remarks

1. (2nd week) Establish the first practical project
theme and allocate the papers to be discussed

Conversation, debate,
case studies

Seminar is
organized as a
total of 7 hours – 2
hours every
second week

2. (4th week) Discussion of the allocated papers Conversation, debate,
case studies, examples

3. (6th week) Discussion of the allocated papers Conversation, debate,
case studies

4. (8th week) Project presentation and allocate the
theme for the written critical essay

Evaluation

5. (10th week) Discussion of the allocated papers Conversation, debate,
case studies

6. (12th week) Discussion of the allocated papers Conversation, debate,
case studies, examples

7. (14th week) Project presentation and Critical
Essay evaluation

Evaluation

Bibliography
Students will use the following two tools for their two practical projects: MagicDraw and
EPF.
Students will search for the papers in energy-aware programming domain.

9. Corroborating the content of the discipline with the expectations of the epistemic community,
professional associations and representative employers within the field of the program

 The course respects the IEEE and ACM Curriculla Recommendations for Software Engineering
studies;

 The content of the course is considered by the software companies as important for average
software development skills

10. Evaluation
Type of activity 10.1 Evaluation criteria 10.2 Evaluation methods 10.3 Share in

the grade (%)
10.4 Course - know the basic principle of

the domain;
- apply the course concepts
- problem solving

Written exam 40.00%

http://www.omg.org/spec/SPEM/2.0/

10.5 Seminar/lab
activities

- be able to implement
course concepts

- be able to use tools for
different software process
concept

- be able to do a critical
evaluation of research
papers
- to be able to write a critical
essay

-Practical examination
-documentation
-portofolio
-continous observations

60.00%

10.6 Minimum performance standards
 At least grade 5 (from a scale of 1 to 10) at both written exam and laboratory work.

Date Signature of course coordinator Signature of seminar coordinator

.................. Assoc. Prof. PhD. Florin CRACIUN Assoc. Prof. PhD. Florin CRACIUN

Date of approval Signature of the head of department

...…............................

