LEHRVERANSTALTUNGSBESCHREIBUNG

1. Angaben zum Programm

1.1 Hochschuleinrichtung	Babes-Bolyai Universität, Cluj-Napoca
1.2 Fakultät	Mathematik und Informatik
1.3 Department	Informatik
1.4 Fachgebiet	Informatik
1.5 Studienform	Bachelor
1.6 Studiengang /	Informatik
Qualifikation	

2. Angaben zum Studienfach

2.1 LV-Bezeichn	ung	Einführ	Einführung in die Graphentheorie				
2.2 Lehrverantwortlicher – Vorlesung Lect.Dr. Christian Sacarea							
2.3 Lehrverantwortlicher – Seminar			ar	Lect. Dr. Christia	an Sacarea		
2.4 Studienjahr	1	2.5	2	2.6. Kolloquium 2.7 Art der Verpflichte			
		Semester		Prüfungsform		LV	

3. Geschätzter Workload in Stunden

3.1 SWS	4	von denen: 3.2	2	3.3 Seminar/Übung	2
		Vorlesung			
3.4 Gesamte Stundenanzahl im	56	von denen: 3.5	28	3.6 Seminar/Übung	28
Lehrplan		Vorlesung			
Verteilung der Studienzeit:					
Studium nach Handbücher, Kursbuch, Bibliographie und Mitschriften					20
Zusätzliche Vorbereitung in der Bibliothek, auf elektronischen Fachplattformen und durch					10
Feldforschung					
Vorbereitung von Seminaren/Übungen, Präsentationen, Referate, Portfolios und Essays					20
Tutorien					10
Prüfungen					9
Andere Tätigkeiten:					0

3.7 Gesamtstundenanzahl Selbststudium	69
3.8 Gesamtstundenanzahl / Semester	125
3.9 Leistungspunkte	5

4. Voraussetzungen (falls zutreffend)

4.1 curricular	•
4.2 kompetenzbezogen	•

5. Bedingungen (falls zutreffend)

5.1 zur Durchführung der	Vorlesungsraum, Beamer, Laptop		
Vorlesung			
5.2 zur Durchführung des	Seminarraum		
Seminars / der Übung			

6. Spezifische erworbene Kompetenzen

	Wissen, Verstehen und Anwenden der Grundbegriffe : • der Graphentheorie
Jbe	Modellierung in verschiedene Bereiche
Berufliche Kompetenzen	Implementierung verschiedener algorithmen der Graphentheorie
Transversale Kompetenzen	

7. Ziele (entsprechend der erworbenen Kompetenzen)

7.1 Allgemeine Ziele der	Kenntnis von mathematischen und algorithmischen Grundlagen der
Lehrveranstaltung	Graphentheorie
7.2 Spezifische Ziele der Lehrveranstaltung	Lösen spezifischer Probleme mit Hilfe der Graphentheorie

8. Inhalt

8.1 Vorlesung	Lehr- und Lernmethode	Anmerkungen
1. Grundlegende Begriffe: Graph, Multigraph,	Darstellung der Thematik, Diskussion	
Teilgraph, Weg, Kette, zusammenhängende		
Graphen		
	77	
2. Weg in einem Graph: Kettenfolge, Wert,	Vortrag, Beweis, Diskussion	
verschiedene Algorithmen: Moore-Dijkstra,		
Bellman-Kalaba, Ford, Flozd-Hu, Dantzig,		
kritische Wege, eulersche Wege, hamiltonische		
Wege		
3. Verschiedene Konstanten in der	Vortrag, Beweis, Diskussion	
Graphentheorie		

4. Bäume, Algorithmen von Kruskal und Prim	Vortrag, Beweis, Diskussion
5. Planare Graphen	Vortrag, Beweis, Diskussion
6. Flussnetzwerke, Ford-Fulkerson Algorithmus	Vortrag, Beweis, Diskussion
7. Kupplungen in Graphen	Vortrag, Diskussion
8. Extremalprobleme: Theoreme von Ramsey und Thuran	Vortrag, Beweis, Diskussion
9. Abzählbarkeitsprobleme	Vortrag, Diskussion

Literatur

- 1. Sachs, H., Einführung in die Theorie der endlichen Graphen, Teubner, Leipyig, 1970, 1972.
- 2. Walter, H-J, Graphern, Algorithmen, Programme, Fachbuchverlag, Leipzig, 1987.
- 1. BERGE C., Graphes et hypergraphes, Dunod, Paris 1970.
- 2. B. ANDRÁSFAI: Introductory graph theory, Akadémiai Kiadó North Holland, 1987.
- 3. BERGE C., Teoria grafurilor si aplicatiile ei, Ed. Tehnica, 1972
- 4. T. TOADERE: Grafe. Teorie, algoritmi si aplicatii, Ed. Albastra, Cluj-N.(ed.I, II si III), 2002 si 2009
- 5. KÁSA ZOLTÁN: Combinatiroca cu aplicatii, Presa Universitara Clujeana, 2003.
- 6. CORMEN, LEISERSON, RIVEST: Introducere in algoritmi, Editura Computer Libris Agora, 2000
- 7. ROSU A.: Teoria grafelor, algoritmi, aplicatii. Ed. Milit.1974
- 8.CIUREA E., CIUPALA L., Algoritmi algoritmii fluxurilor in retele, Ed. Matrix Rom, 2006
- 9. http://www.wikipedia.org

Aufgabensammlungen:

- 1. KÁSA Z., TARTIA C., TAMBULEA L.: Culegere de probleme de teoria grafelor, Lito. Univ. Cluj-Napoca 1979.
- 2. CATARANCIUC S., IACOB M.E., TOADERE T., Probleme de teoria grafelor, Lito. Univ. Cluj-Napoca, 1994.
- 3. TOMESCU I., Probleme de combinatorica si teoria grafurilor. Ed. Did. si Pedag. Bucuresti 1981.

8.2 Seminar / Übung	Lehr- und Lernmethode	Anmerkungen			
Das Lösen verschiedener Probleme mit Hilfe der Graphentheorie					
vol3(1990).					

9. Verbindung der Inhalte mit den Erwartungen der Wissensgemeinschaft, der Berufsverbände und der für den Fachbereich repräsentativen Arbeitgeber

Diese Vorlesung entspricht der IEEE und ACM Richtlinien für Informatik Vorlesungen.

Die Vorlesung ermöglicht einen Überblick im Bereich der Modellierung verschiedener Probleme mit Graphentheorie.

10. Prüfungsform

Veranstaltungsart	10.1 Evaluationskriterien	10.2	10.3 Anteil an der
		Evaluationsmethoden	Gesamtnote
10.4 Vorlesung	Korrekter Umgang mit den	schriftliche	70%
	Begriffen und Algorithmen.	Abschlussarbeit	
	Lösen von Probleme		
	theoretischer und praktischer		
	Natur.		
10.7.0			2004
10.5 Seminar / Übung	Programmieraufgaben	Diskussion	30%
10.6 Minimala Laistungs			

10.6 Minimale Leistungsstandards

Für das Bestehen der Prüfung muss die Mindestnote 5 erzielt werden.

Ausgefüllt am: Vorlesungsverantwortlicher Seminarverantwortlicher

13.04.2015 Lect. Dr. Christian Sacarea Lect. Dr. Christian Sacarea

Genehmigt im Department am: Departmentdirektor

13.04.2015 Univ. Prof. Dr. Bazil Parv